- Browse by Subject
Browsing by Subject "Causal inference"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Coincidence analysis: a new method for causal inference in implementation science(BMC, 2020-12-11) Garr Whitaker, Rebecca; Sperber, Nina; Baumgartner, Michael; Thiem, Alrik; Cragun, Deborah; Damschroder, Laura; Miech, Edward J.; Slade, Alecia; Birken, Sarah; Emergency Medicine, School of MedicineBackground: Implementation of multifaceted interventions typically involves many diverse elements working together in interrelated ways, including intervention components, implementation strategies, and features of local context. Given this real-world complexity, implementation researchers may be interested in a new mathematical, cross-case method called Coincidence Analysis (CNA) that has been designed explicitly to support causal inference, answer research questions about combinations of conditions that are minimally necessary or sufficient for an outcome, and identify the possible presence of multiple causal paths to an outcome. CNA can be applied as a standalone method or in conjunction with other approaches and can reveal new empirical findings related to implementation that might otherwise have gone undetected. Methods: We applied CNA to a publicly available dataset from Sweden with county-level data on human papillomavirus (HPV) vaccination campaigns and vaccination uptake in 2012 and 2014 and then compared CNA results to the published regression findings. Results: The original regression analysis found vaccination uptake was positively associated only with the availability of vaccines in schools. CNA produced different findings and uncovered an additional solution path: high vaccination rates were achieved by either (1) offering the vaccine in all schools or (2) a combination of offering the vaccine in some schools and media coverage. Conclusions: CNA offers a new comparative approach for researchers seeking to understand how implementation conditions work together and link to outcomes.Item The effect of sugar-sweetened beverage consumption on childhood obesity - causal evidence(2016-05-18) Yang, Yan; Terza, Joseph V.; Courtemanche, Charles; Jung, Haeil; Mak, Henry Y.; Wu, JisongCommunities and States are increasingly targeting the consumption of sugar sweetened beverages (SSBs), especially soda, in their efforts to curb childhood obesity. However, the empirical evidence based on which policy makers design the relevant policies is not causally interpretable. In the present study, we suggest a modeling framework that can be used for making causal estimation and inference in the context of childhood obesity. This modeling framework is built upon the two-stage residual inclusion (2SRI) instrumental variables method and have two levels – level one models children’s lifestyle choices and level two models children’s energy balance which is assumed to be dependent on their lifestyle behaviors. We start with a simplified version of the model that includes only one policy, one lifestyle, one energy balance, and one observable control variable. We then extend this simple version to be a general one that accommodates multiple policy and lifestyle variables. The two versions of the model are 1) first estimated via the nonlinear least square (NLS) method (henceforth NLS-based 2SRI); and 2) then estimated via the maximum likelihood estimation (MLE) method (henceforth MLE-based 2SRI). Using simulated data, we show that 1) our proposed 2SRI method outperforms the conventional method that ignores the inherent nonlinearity [the linear instrumental variables (LIV) method] or the potential endogeneity [the nonlinear regression (NR) method] in obtaining the relevant estimators; and 2) the MLE-based 2SRI provides more efficient estimators (also consistent) compared to the NLS-based one. Real data analysis is conducted to illustrate the implementation of 2SRI method in practice using both NLS and MLE methods. However, due to data limitation, we are not able to draw any inference regarding the impacts of lifestyle, specifically SSB consumption, on childhood obesity. We are in the process of getting better data and, after doing so, we will replicate and extend the analyses conducted here. These analyses, we believe, will produce causally interpretable evidence of the effects of SSB consumption and other lifestyle choices on childhood obesity. The empirical analyses presented in this dissertation should, therefore, be viewed as an illustration of our newly proposed framework for causal estimation and inference.Item Estimation of treatment effect in a subpopulation: An empirical Bayes approach(Taylor & Francis, 2016) Shen, Changyu; Li, Xiaochun; Jong, Jaesik; Department of Biostatistics, Richard M. Fairbanks School of Public HealthIt is well recognized that the benefit of a medical intervention may not be distributed evenly in the target population due to patient heterogeneity, and conclusions based on conventional randomized clinical trials may not apply to every person. Given the increasing cost of randomized trials and difficulties in recruiting patients, there is a strong need to develop analytical approaches to estimate treatment effect in subpopulations. In particular, due to limited sample size for subpopulations and the need for multiple comparisons, standard analysis tends to yield wide confidence intervals of the treatment effect that are often noninformative. We propose an empirical Bayes approach to combine both information embedded in a target subpopulation and information from other subjects to construct confidence intervals of the treatment effect. The method is appealing in its simplicity and tangibility in characterizing the uncertainty about the true treatment effect. Simulation studies and a real data analysis are presented.Item Evaluating the Impact of a HIV Low-Risk Express Care Task-Shifting Program: A Case Study of the Targeted Learning Roadmap(Walter de Gruyter GmbH, 2016-12) Tran, Linh; Yiannoutsos, Constantin T.; Musick, Beverly S.; Wools-Kaloustian, Kara K.; Siika, Abraham; Kimaiyo, Sylvester; Laan, Mark J. van der; Petersen, Maya; Biostatistics, School of Public HealthIn conducting studies on an exposure of interest, a systematic roadmap should be applied for translating causal questions into statistical analyses and interpreting the results. In this paper we describe an application of one such roadmap applied to estimating the joint effect of both time to availability of a nurse-based triage system (low risk express care (LREC)) and individual enrollment in the program among HIV patients in East Africa. Our study population is comprised of 16,513 subjects found eligible for this task-shifting program within 15 clinics in Kenya between 2006 and 2009, with each clinic starting the LREC program between 2007 and 2008. After discretizing follow-up into 90-day time intervals, we targeted the population mean counterfactual outcome (i. e. counterfactual probability of either dying or being lost to follow up) at up to 450 days after initial LREC eligibility under three fixed treatment interventions. These were (i) under no program availability during the entire follow-up, (ii) under immediate program availability at initial eligibility, but non-enrollment during the entire follow-up, and (iii) under immediate program availability and enrollment at initial eligibility. We further estimated the controlled direct effect of immediate program availability compared to no program availability, under a hypothetical intervention to prevent individual enrollment in the program. Targeted minimum loss-based estimation was used to estimate the mean outcome, while Super Learning was implemented to estimate the required nuisance parameters. Analyses were conducted with the ltmle R package; analysis code is available at an online repository as an R package. Results showed that at 450 days, the probability of in-care survival for subjects with immediate availability and enrollment was 0.93 (95% CI: 0.91, 0.95) and 0.87 (95% CI: 0.86, 0.87) for subjects with immediate availability never enrolling. For subjects without LREC availability, it was 0.91 (95% CI: 0.90, 0.92). Immediate program availability without individual enrollment, compared to no program availability, was estimated to slightly albeit significantly decrease survival by 4% (95% CI 0.03,0.06, p<0.01). Immediately availability and enrollment resulted in a 7 % higher in-care survival compared to immediate availability with non-enrollment after 450 days (95% CI-0.08,-0.05, p<0.01). The results are consistent with a fairly small impact of both availability and enrollment in the LREC program on incare survival.Item Genetic Influence Underlying Brain Connectivity Phenotype: A Study on Two Age-Specific Cohorts(Frontiers Media, 2022-02-07) Cong, Shan; Yao, Xiaohui; Xie, Linhui; Yan, Jingwen; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineerinBackground: Human brain structural connectivity is an important imaging quantitative trait for brain development and aging. Mapping the network connectivity to the phenotypic variation provides fundamental insights in understanding the relationship between detailed brain topological architecture, function, and dysfunction. However, the underlying neurobiological mechanism from gene to brain connectome, and to phenotypic outcomes, and whether this mechanism changes over time, remain unclear. Methods: This study analyzes diffusion-weighted imaging data from two age-specific neuroimaging cohorts, extracts structural connectome topological network measures, performs genome-wide association studies of the measures, and examines the causality of genetic influences on phenotypic outcomes mediated via connectivity measures. Results: Our empirical study has yielded several significant findings: 1) It identified genetic makeup underlying structural connectivity changes in the human brain connectome for both age groups. Specifically, it revealed a novel association between the minor allele (G) of rs7937515 and the decreased network segregation measures of the left middle temporal gyrus across young and elderly adults, indicating a consistent genetic effect on brain connectivity across the lifespan. 2) It revealed rs7937515 as a genetic marker for body mass index in young adults but not in elderly adults. 3) It discovered brain network segregation alterations as a potential neuroimaging biomarker for obesity. 4) It demonstrated the hemispheric asymmetry of structural network organization in genetic association analyses and outcome-relevant studies. Discussion: These imaging genetic findings underlying brain connectome warrant further investigation for exploring their potential influences on brain-related complex diseases, given the significant involvement of altered connectivity in neurological, psychiatric and physical disorders.Item Incremental Propensity Score Effects for Time-Fixed Exposures(Wolters Kluwer, 2021) Naimi, Ashley I.; Rudolph, Jacqueline E.; Kennedy, Edward H.; Cartus, Abigail; Kirkpatrick, Sharon I.; Haas, David M.; Simhan, Hyagriv; Bodnar, Lisa M.; Obstetrics and Gynecology, School of MedicineWhen causal inference is of primary interest, a range of target parameters can be chosen to define the causal effect of interest, such as average treatment effects (ATEs). However, ATEs may not always align with the research question at hand. Furthermore, the assumptions needed to interpret estimates as ATEs, such as exchangeability, consistency, and positivity, are often not met. Here, we present the incremental propensity score (incremental PS) approach to quantify the effect of shifting each person’s exposure propensity by some pre-determined amount. Compared to the ATE, incremental PS may better reflect the impact of certain policy interventions, and do not require that positivity hold. Using the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b), we quantified the relation between total vegetable intake and the risk of preeclampsia, and compared it to average treatment effect estimates. The ATE estimates suggested a reduction of between two and three preeclampsia cases per 100 pregnancies for consuming at least 1/2 a cup of vegetables per 1,000 kcal. However, positivity violations obfuscate the interpretation of these results. In contrast, shifting each woman’s exposure propensity by odds ratios ranging from 0.20 to 5.0 yielded no difference in the risk of preeclampsia. Our analyses show the utility of the incremental propensity score effects in addressing public health questions with fewer assumptions.Item Robust estimation of heterogeneous treatment effects: an algorithm-based approach(Taylor & Francis, 2021) Li, Ruohong; Wang, Honglang; Zhao, Yi; Su, Jing; Tu, Wanzhu; Biostatistics, School of Public HealthHeterogeneous treatment effect estimation is an essential element in the practice of tailoring treatment to suit the characteristics of individual patients. Most existing methods are not sufficiently robust against data irregularities. To enhance the robustness of the existing methods, we recently put forward a general estimating equation that unifies many existing learners. But the performance of model-based learners depends heavily on the correctness of the underlying treatment effect model. This paper addresses this vulnerability by converting the treatment effect estimation to a weighted supervised learning problem. We combine the general estimating equation with supervised learning algorithms, such as the gradient boosting machine, random forest, and artificial neural network, with appropriate modifications. This extension retains the estimators’ robustness while enhancing their flexibility and scalability. Simulation shows that the algorithm-based estimation methods outperform their model-based counterparts in the presence of nonlinearity and non-additivity. We developed an R package, RCATE, for public access to the proposed methods. To illustrate the methods, we present a real data example to compare the blood pressure-lowering effects of two classes of antihypertensive agents.