- Browse by Subject
Browsing by Subject "Caspase 3"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Molecular and Cellular Mechanisms Leading to Similar Phenotypes in Down and Fetal Alcohol Syndromes(2013-08-22) Solzak, Jeffrey Peter; Roper, Randall J.; Marrs, James; Kusmierczyk, Andrew; Atkinson, SimonDown syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from cognitive impairment to craniofacial abnormalities. While DS originates from the trisomy of human chromosome 21 and FAS from prenatal alcohol consumption, many of the defining characteristics for these two disorders are stunningly similar. A survey of the literature revealed over 20 similar craniofacial and structural deficits in both human and mouse models of DS and FAS. We hypothesized that the similar phenotypes observed are caused by disruptions in common molecular or cellular pathways during development. To test our hypothesis, we examined morphometric, genetic, and cellular phenotypes during development of our DS and FAS mouse models at embryonic days 9.5-10.5. Our preliminary evidence indicates that during early development, dysregulation of Dyrk1a and Rcan1, cardinal genes affecting craniofacial and neurological precursors of DS, are also dysregulated in embryonic FAS models. Furthermore, Caspase 3 was also found to have similar expression in DS and FAS craniofacial neural crest derived tissues such as the first branchial arch (BA1) and regions of the brain. This may explain a developmental deficit by means of apoptosis. We have also investigated the expression of pAkt, a protein shown to be affected in FAS models, in cells located within the craniofacial precursor of Ts65Dn. Recent research shows that Ttc3, a gene that is triplicated and shown to be overexpressed in the BA1 and neural tube of Ts65Dn, targets pAkt in the nucleus affecting important transcription factors regulating cell cycle and cell survival. While Akt has been shown to play a role in neuronal development, we hypothesize that it also affects similar cellular properties in craniofacial precursors during development. By comparing common genotypes and phenotypes of DS and FAS we may provide common mechanisms to target for potential treatments of both disorders. One of the least understood phenotypes of DS is their deficient immune system. Many individuals with DS have varying serious illnesses ranging from coeliac disease to respiratory infections that are a direct result of this immunodeficiency. Proteasomes are an integral part of a competent and efficient immune system. It has been observed that mice lacking immunoproteasomes present deficiencies in providing MHC class I peptides, proteins essential in identifying infections. A gene, Psmg1 (Dscr2), triplicated in both humans and in Ts65Dn mice, is known to act as a proteasome assembly chaperone for the 20S proteasome. We hypothesized that a dysregulation in this gene promotes a proteasome assembly aberration, impacting the efficiency of the DS immune system. To test this hypothesis we performed western blot analysis on specific precursor and processed β-subunits of the 20S proteasome in thymic tissue of adult Ts65Dn. While the β-subunits tested displayed no significant differences between trisomic and euploid mice we have provided further insight to the origins of immunodeficiency in DS.Item Neuron-Specific HuR-Deficient Mice Spontaneously Develop Motor Neuron Disease(The American Association of Immunologists, 2018-07-01) Sun, Kevin; Li, Xiao; Chen, Xing; Bai, Ying; Zhou, Gao; Kokiko-Cochran, Olga N.; Lamb, Bruce; Hamilton, Thomas A.; Lin, Ching-Yi; Lee, Yu-Shang; Herjan, Tomasz; Neuroscience, IU School of MedicineHuman Ag R (HuR) is an RNA binding protein in the ELAVL protein family. To study the neuron-specific function of HuR, we generated inducible, neuron-specific HuR-deficient mice of both sexes. After tamoxifen-induced deletion of HuR, these mice developed a phenotype consisting of poor balance, decreased movement, and decreased strength. They performed significantly worse on the rotarod test compared with littermate control mice, indicating coordination deficiency. Using the grip-strength test, it was also determined that the forelimbs of neuron-specific HuR-deficient mice were much weaker than littermate control mice. Immunostaining of the brain and cervical spinal cord showed that HuR-deficient neurons had increased levels of cleaved caspase-3, a hallmark of cell apoptosis. Caspase-3 cleavage was especially strong in pyramidal neurons and α motor neurons of HuR-deficient mice. Genome-wide microarray and real-time PCR analysis further indicated that HuR deficiency in neurons resulted in altered expression of genes in the brain involved in cell growth, including trichoplein keratin filament-binding protein, Cdkn2c, G-protein signaling modulator 2, immediate early response 2, superoxide dismutase 1, and Bcl2. The additional enriched Gene Ontology terms in the brain tissues of neuron-specific HuR-deficient mice were largely related to inflammation, including IFN-induced genes and complement components. Importantly, some of these HuR-regulated genes were also significantly altered in the brain and spinal cord of patients with amyotrophic lateral sclerosis. Additionally, neuronal HuR deficiency resulted in the redistribution of TDP43 to cytosolic granules, which has been linked to motor neuron disease. Taken together, we propose that this neuron-specific HuR-deficient mouse strain can potentially be used as a motor neuron disease model.Item Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis(The American Association of Immunologists, 2014-09-15) Jing, Xuefang; Park, Shin Yong; Núñez, Gabriel; Dziarski, Roman; Gupta, Dipika; Department of Medicine, IU School of MedicineAberrant immune response and changes in the gut microflora are the main causes of inflammatory bowel disease (IBD). Peptidoglycan recognition proteins (Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4) are bactericidal innate immunity proteins that maintain normal gut microbiome, protect against experimental colitis, and are associated with IBD in humans. Nucleotide-binding oligomerization domain 2 (Nod2) is an intracellular bacterial sensor and may be required for maintaining normal gut microbiome. Mutations in Nod2 are strongly associated with Crohn's disease, but the causative mechanism is not understood, and the role of Nod2 in ulcerative colitis is not known. Because IBD is likely caused by variable multiple mutations in different individuals, in this study, we examined the combined role of Pglyrp3 and Nod2 in the development of experimental colitis in mice. We demonstrate that a combined deficiency of Pglyrp3 and Nod2 results in higher sensitivity to dextran sodium sulfate-induced colitis compared with a single deficiency. Pglyrp3(-/-)Nod2(-/-) mice had decreased survival and higher loss of body weight, increased intestinal bleeding, higher apoptosis of colonic mucosa, elevated expression of cytokines and chemokines, altered gut microbiome, and increased levels of ATP in the colon. Increased sensitivity to dextran sodium sulfate-induced colitis in Pglyrp3(-/-)Nod2(-/-) mice depended on increased apoptosis of intestinal epithelium, changed gut microflora, and elevated ATP. Pglyrp3 deficiency contributed colitis-predisposing intestinal microflora and increased intestinal ATP, whereas Nod2 deficiency contributed higher apoptosis and responsiveness to increased level of ATP. In summary, Pglyrp3 and Nod2 are both required for maintaining gut homeostasis and protection against colitis, but their protective mechanisms differ.