- Browse by Subject
Browsing by Subject "Cardiovascular disease risk"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of the Interaction Between Smoking and Depressive Symptom Clusters With Coronary Artery Calcification: The CARDIA Study(Taylor & Francis, 2017-01) Carroll, Allison J.; Auer, Reto; Colangelo, Laura A.; Carnethon, Mercedes R.; Jacobs, David R., Jr.; Stewart, Jesse C.; Widome, Rachel; Carr, J. Jeffrey; Liu, Kiang; Hitsman, Brian; Psychology, School of ScienceOBJECTIVE: Depressive symptom clusters are differentially associated with prognosis among patients with cardiovascular disease (CVD). Few studies have prospectively evaluated the association between depressive symptom clusters and risk of CVD. Previously, we observed that smoking and global depressive symptoms were synergistically associated with coronary artery calcification (CAC). The purpose of this study was to determine whether the smoking by depressive symptoms interaction, measured cumulatively over 25 years, differed by depressive symptom cluster (negative affect, anhedonia, and somatic symptoms) in association with CAC. METHODS: Participants (N = 3,189: 54.5% female; 51.5% Black; average age = 50.1 years) were followed from 1985-1986 through 2010-2011 in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Smoking exposure was measured by cumulative cigarette pack-years (cigarette packs smoked per day × number of years smoking; year 0 through year 25). Depressive symptoms were measured using a 14-item, 3-factor (negative affect, anhedonia, somatic symptoms) model of the Center for Epidemiologic Studies Depression (CES-D) Scale (years 5, 10, 15, 20, and 25). CAC was assessed at year 25. Logistic regression models were used to evaluate the association between the smoking by depressive symptom clusters interactions with CAC ( = 0 vs. > 0), adjusted for CVD-related sociodemographic, behavioral, and clinical covariates. RESULTS: 907 participants (28% of the sample) had CAC > 0 at year 25. The depressive symptom clusters did not differ significantly between the two groups. Only the cumulative somatic symptom cluster by cumulative smoking exposure interaction was significantly associated with CAC > 0 at year 25 (p = .028). Specifically, adults with elevated somatic symptoms (score 9 out of 18) who had 10, 20, or 30 pack-years of smoking exposure had respective odds ratios (95% confidence intervals) of 2.06 [1.08, 3.93], 3.71 [1.81, 7.57], and 6.68 [2.87, 15.53], ps < .05. Negative affect and anhedonia did not significantly interact with smoking exposure associated with CAC >0, ps > .05. CONCLUSIONS: Somatic symptoms appear to be a particularly relevant cluster of depressive symptomatology in the relationship between smoking and CVD risk.Item Circulating trimethylamine N-oxide levels following fish or seafood consumption(Springer, 2022) Wang, Zeneng; Tang, W. H. Wilson; O’Connell, Thomas; Garcia, Erwin; Jeyarajah, Elias J.; Li, Xinmin S.; Jia, Xun; Weeks, Taylor L.; Hazen, Stanley L.; Otolaryngology -- Head and Neck Surgery, School of MedicinePurpose: Some species of fish and seafood are high in trimethylamine N-oxide (TMAO), which accumulates in muscle where it protects against pressure and cold. Trimethylamine (TMA), the metabolic precursor to TMAO, is formed in fish during bacterial spoilage. Fish intake is promoted for its potential cardioprotective effects. However, numerous studies show TMAO has pro-atherothrombotic properties. Here, we determined the effects of fish or seafood consumption on circulating TMAO levels in participants with normal renal function. Methods: TMAO and omega-3 fatty acid content were quantified across multiple different fish or seafood species by mass spectrometry. Healthy volunteers (n = 50) were recruited for three studies. Participants in the first study consented to 5 consecutive weekly blood draws and provided dietary recall for the 24 h preceding each draw. In the second study, TMAO levels were determined following defined low and high TMAO diets. Finally, participants consumed test meals containing shrimp, tuna, fish sticks, salmon or cod. TMAO levels were quantified by mass spectrometry in blood collected before and after dietary challenge. Results: TMAO + TMA content varied widely across fish and seafood species. Consumption of fish sticks, cod, and to a lesser extent salmon led to significant increases in circulating TMAO levels. Within 1 day, circulating TMAO concentrations in all participants returned to baseline levels. Conclusions: We conclude that some fish and seafood contain high levels of TMAO, and may induce a transient elevation in TMAO levels in some individuals. Selection of low TMAO content fish is prudent for subjects with elevated TMAO, cardiovascular disease or impaired renal function.