- Browse by Subject
Browsing by Subject "Cardiovascular Physiological Phenomena"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The cardiopulmonary effects of a 3,100 mile bicycle tour(1972) Wickler, W. LaurenceItem The effects of carbon monoxide, hypoxic hypoxia, and carbon dioxide on cardiovascular responses to catecholamines and angiotensin in rats(1977) Chin Tseng, Marjorie Mei-ChwenItem Increasing Cardiomyocyte Atrogin-1 Reduces Aging-Associated Fibrosis and Regulates Remodeling in Vivo(Elsevier, 2018-07) Mota, Roberto; Parry, Traci L.; Yates, Cecelia C.; Qiang, Zhaoyan; Eaton, Samuel C.; Mwiza, Jean Marie; Tulasi, Deepthi; Schisler, Jonathan C.; Patterson, Cam; Zaglia, Tania; Sandri, Marco; Willis, Monte S.; Pathology and Laboratory Medicine, School of MedicineThe muscle-specific ubiquitin ligase atrogin-1 (MAFbx) has been identified as a critical regulator of pathologic and physiological cardiac hypertrophy; it regulates these processes by ubiquitinating transcription factors [nuclear factor of activated T-cells and forkhead box O (FoxO) 1/3]. However, the role of atrogin-1 in regulating transcription factors in aging has not previously been described. Atrogin-1 cardiomyocyte-specific transgenic (Tg+) adult mice (α-major histocompatibility complex promoter driven) have normal cardiac function and size. Herein, we demonstrate that 18-month-old atrogin-1 Tg+ hearts exhibit significantly increased anterior wall thickness without functional impairment versus wild-type mice. Histologic analysis at 18 months revealed atrogin-1 Tg+ mice had significantly less fibrosis and significantly greater nuclei and cardiomyocyte cross-sectional analysis. Furthermore, by real-time quantitative PCR, atrogin-1 Tg+ had increased Col 6a4, 6a5, 6a6, matrix metalloproteinase 8 (Mmp8), and Mmp9 mRNA, suggesting a role for atrogin-1 in regulating collagen deposits and MMP-8 and MMP-9. Because atrogin-1 Tg+ mice exhibited significantly less collagen deposition and protein levels, enhanced Mmp8 and Mmp9 mRNA may offer one mechanism by which collagen levels are kept in check in the aged atrogin-1 Tg+ heart. In addition, atrogin-1 Tg+ hearts showed enhanced FoxO1/3 activity. The present study shows a novel link between atrogin-1-mediated regulation of FoxO1/3 activity and reduced collagen deposition and fibrosis in the aged heart. Therefore, targeting FoxO1/3 activity via the muscle-specific atrogin-1 ubiquitin ligase may offer a muscle-specific method to modulate aging-related cardiac fibrosis.