- Browse by Subject
Browsing by Subject "Cardiovascular"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item CARDIOVASCULAR AND HEMODYNAMIC EFFECTS OF GLUCAGON-LIKE PEPTIDE-1(Springer US, 2014-09) Goodwill, Adam G.; Mather, Kieren J.; Conteh, Abass M.; Sassoon, Daniel; Noblet, Jillian N.; Tune, Johnathan D.; Department of Cellular & Integrative Physiology, School of MedicineGlucagon-like peptide-1 (GLP-1) is an incretin hormone that has been shown to have hemodynamic and cardioprotective capacity in addition to its better characterized glucoregulatory actions. Because of this, emerging research has focused on the ability of GLP-1 based therapies to drive myocardial substrate selection, enhance cardiac performance and regulate heart rate, blood pressure and vascular tone. These studies have produced consistent and reproducible results amongst numerous laboratories. However, there are obvious disparities in findings obtained in small animal models versus those of higher mammals. This species dependent discrepancy calls to question, the translational value of individual findings. Moreover, few studies of GLP-1 mediated cardiovascular action have been performed in the presence of a pre-existing comorbidities (e.g. obesity/diabetes) which limits interpretation of the effectiveness of incretin-based therapies in the setting of disease. This review addresses cardiovascular and hemodynamic potential of GLP-1 based therapies with attention to species specific effects as well as the interaction between therapies and disease.Item Cinacalcet, dialysate calcium concentration, and cardiovascular events in the EVOLVE trial(Wiley, 2016-07) Pun, Patrick H.; Abdalla, Safa; Block, Geoffrey A.; Chertow, Glenn M.; Correa-Rotter, Ricardo; Dehmel, Bastian; Drüeke, Tilman B.; Floege, Jürgen; Goodman, William G.; Herzog, Charles A.; London, Gerard M.; Mahaffey, Kenneth W.; Moe, Sharon M.; Parfrey, Patrick S.; Wheeler, David C.; Middleton, John P.; Medicine, School of MedicineAmong patients receiving hemodialysis, abnormalities in calcium regulation have been linked to an increased risk of cardiovascular events. Cinacalcet lowers serum calcium concentrations through its effect on parathyroid hormone secretion and has been hypothesized to reduce the risk of cardiovascular events. In observational cohort studies, prescriptions of low dialysate calcium concentration and larger observed serum-dialysate calcium gradients have been associated with higher risks of in-dialysis facility or peri-dialytic sudden cardiac arrest. We performed this study to examine the risks associated with dialysate calcium and serum-dialysate gradients among participants in the Evaluation of Cinacalcet Hydrochloride Therapy to Lower Cardiovascular Events (EVOLVE) trial. In EVOLVE, 3883 hemodialysis patients were randomized 1:1 to cinacalcet or placebo. Dialysate calcium was administered at the discretion of treating physicians. We examined whether baseline dialysate calcium concentration or the serum-dialysate calcium gradient modified the effect of cinacalcet on the following adjudicated endpoints: (1) primary composite endpoint (death or first non-fatal myocardial infarction, hospitalization for unstable angina, heart failure, or peripheral vascular event); (2) cardiovascular death; and (3) sudden death. In EVOLVE, use of higher dialysate calcium concentrations was more prevalent in Europe and Latin America compared with North America. There was a significant fall in serum calcium concentration in the cinacalcet group; dialysate calcium concentrations were changed infrequently in both groups. There was no association between baseline dialysate calcium concentration or serum-dialysate calcium gradient and the endpoints examined. Neither the baseline dialysate calcium nor the serum-dialysate calcium gradient significantly modified the effects of cinacalcet on the outcomes examined. The effects of cinacalcet on cardiovascular death and major cardiovascular events are not altered by the dialysate calcium prescription and serum-dialysate calcium gradient.Item Clinical significance of monocyte heterogeneity(SpringerOpen, 2015-02-14) Stansfield, Brian K.; Ingram, David A.; Department of Medicine, IU School of MedicineMonocytes are primitive hematopoietic cells that primarily arise from the bone marrow, circulate in the peripheral blood and give rise to differentiated macrophages. Over the past two decades, considerable attention to monocyte diversity and macrophage polarization has provided contextual clues into the role of myelomonocytic derivatives in human disease. Until recently, human monocytes were subdivided based on expression of the surface marker CD16. "Classical" monocytes express surface markers denoted as CD14(++)CD16(-) and account for greater than 70% of total monocyte count, while "non-classical" monocytes express the CD16 antigen with low CD14 expression (CD14(+)CD16(++)). However, recognition of an intermediate population identified as CD14(++)CD16(+) supports the new paradigm that monocytes are a true heterogeneous population and careful identification of specific subpopulations is necessary for understanding monocyte function in human disease. Comparative studies of monocytes in mice have yielded more dichotomous results based on expression of the Ly6C antigen. In this review, we will discuss the use of monocyte subpopulations as biomarkers of human disease and summarize correlative studies in mice that may yield significant insight into the contribution of each subset to disease pathogenesis.Item Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease(Elsevier, 2018-07) Harlow, Kathryn E.; Africa, Jonathan A.; Wells, Alan; Belt, Patricia H.; Behling, Cynthia A.; Jain, Ajay K.; Molleston, Jean P.; Newton, Kimberly P.; Rosenthal, Philip; Vos, Miriam B.; Xanthakos, Stavra A.; Lavine, Joel E.; Schwimmer, Jeffrey B.; Pediatrics, School of MedicineOBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management.Item Endothelial Colony-Forming Cell Function Is Reduced During HIV Infection(Oxford Academic, 2019-04-01) Gupta, Samir K.; Liu, Ziyue; Sims, Emily C.; Repass, Matthew J.; Haneline, Laura S.; Yoder, Mervin C.; Medicine, School of MedicineBackground: Human immunodeficiency virus (HIV) may be related to cardiovascular disease through monocyte activation-associated endothelial dysfunction. Methods: Blood samples from 15 HIV-negative participants (the uninfected group), 8 HIV-positive participants who were not receiving antiretroviral therapy (ART) (the infected, untreated group), and 15 HIV-positive participants who were receiving ART (the infected, treated group) underwent flow cytometry of endothelial colony-forming cells (ECFCs) and monocyte proportions. IncuCyte live cell imaging of 8 capillary proliferative capacity parameters were obtained from cord blood ECFCs treated with participant plasma. Results: The ECFC percentage determined by flow cytometry was not different between the study groups; however, values of the majority of capillary proliferative capacity parameters (ie, cell area, network length, network branch points, number of networks, and average tube width uniformity) were significantly lower in infected, untreated participants as compared to values for uninfected participants or infected, treated participants (P < .00625 for all comparisons). CD14+CD16+ intermediate monocytes and soluble CD163 were significantly and negatively correlated with several plasma-treated, cord blood ECFC proliferative capacity parameters in the combined HIV-positive groups but not in the uninfected group. Conclusions: Cord blood ECFC proliferative capacity was significantly impaired by plasma from infected, untreated patients, compared with plasma from uninfected participants and from infected, treated participants. Several ECFC functional parameters were adversely associated with monocyte activation in the HIV-positive groups, thereby suggesting a mechanism by which HIV-related inflammation may impair vascular reparative potential and consequently increase the risk of cardiovascular disease during HIV infection.Item Functional contributions of a sex-specific population of myelinated aortic baroreceptors in rat and their changes following ovariectomy(2014) Santa Cruz Chavez, Grace C.; Schild, John H.; Nicol, Grant D.; Oxford, Gerry S.; Rusyniak, Daniel E.; Vasko, Michael R.Gender differences in the basal function of autonomic cardiovascular control are well documented. Consistent baroreflex (BRx) studies suggest that women have higher tonic parasympathetic cardiac activation compared to men. Later in life and concomitant with menopause, a significant reduction in the capacity of the BRx in females increases their risk to develop hypertension, even exceeding that of age-matched males. Loss of sex hormones is but one factor. In female rats, we previously identified a distinct myelinated baroreceptor (BR) neuronal phenotype termed Ah-type, which exhibits functional dynamics and ionic currents that are a mix of those observed in barosensory afferents functionally identified as myelinated A-type or unmyelinated C-type. Interestingly, Ah-type afferents constitute nearly 50% of the total population of myelinated aortic BR in female but less than 2% in male rat. We hypothesized that an afferent basis for sexual dimorphism in BRx function exists. Specifically, we investigated the potential functional impact Ah-type afferents have upon the aortic BRx and what changes, if any, loss of sex hormones through ovariectomy brings upon such functions. We assessed electrophysiological and reflexogenic differences associated with the left aortic depressor nerve (ADN) from adult male, female, and ovariectomized female (OVX) Sprague-Dawley rats. Our results revealed sexually dimorphic conduction velocity (CV) profiles. A distinct, slower myelinated fiber volley was apparent in compound action potential (CAP) recordings from female aortic BR fibers, with an amplitude and CV not observed in males. Subsequent BRx studies demonstrated that females exhibited significantly greater BRx responses compared to males at myelinated-specific intensities. Ovariectomy induced an increased overall temporal dispersion in the CAP of OVX females that may have contributed to their attenuated BRx responses. Interestingly, the most significant changes in depressor dynamics occurred at electrical thresholds and frequencies most closely aligned with Ah-type BR fibers. Collectively, we provide evidence that, in females, two anatomically distinct myelinated afferent pathways contribute to the integrated BRx function, whereas in males only one exists. These functional differences may partly account for the enhanced control of blood pressure in females. Furthermore, Ah-type afferents may provide a neuromodulatory pathway uniquely associated with the hormonal regulation of BRx function.Item Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene(Wiley, 2014-09) Ahmed, A. S. Ishtiaq; Bose, Gracelyn C.; Huang, Li; Azhar, Mohamad; Department of Pediatrics, Indiana University School of MedicineTransforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell-matrix remodeling, epithelial-mesenchymal transition, and wound healing in a highly context-dependent and tissue-specific manner. Tgfb2(-/-) mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2(βgeo) (knockout-first lacZ-tagged insertion) gene-trap allele and Tgfb2(flox) conditional allele. Tgfb2(βgeo/βgeo) or Tgfb2(βgeo/-) mice died at perinatal stage from the same congenital heart defects as Tgfb2(-/-) mice. β-galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2(βgeo) fetal tissue sections. Tgfb2(flox) mice were produced by crossing the Tgfb2(+/βgeo) mice with the FLPeR mice. Tgfb2(flox/-) mice were viable. Tgfb2 conditional knockout (Tgfb2(cko/-) ) fetuses were generated by crossing of Tgfb2(flox/-) mice with Tgfb2(+/-) ; EIIaCre mice. Systemic Tgfb2(cko/-) embryos developed cardiac defects which resembled the Tgfb2(βgeo/βgeo) , Tgfb2(βgeo/-) , and Tgfb2(-/-) fetuses. In conclusion, Tgfb2(βgeo) and Tgfb2(flox) mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesisItem Generation of transgenic mice that conditionally express microRNA miR-145(Wiley, 2020-09) Sawant, Dwitiya; Klevenow, Emilie; Baeten, Jeremy T.; Thomas, Shelby; Manivannan, Sathiyanarayanan; Conway, Simon J.; Lilly, Brenda; Pediatrics, School of MedicineMicroRNAs are modulators of cellular phenotypes and their functions contribute to development, homeostasis, and disease. miR-145 is a conserved microRNA that has been implicated in regulating an array of phenotypes. These include supporting smooth muscle differentiation, repression of stem cell pluripotency, and inhibition of tumor growth and metastasis. Previously, our lab demonstrated that miR-145 acts to suppress cardiac fibrosis through inhibition of the TGF-β signaling pathway. The range of effects that miR-145 has on different cell types makes it an attractive microRNA for further study. Here we describe the generation of transgenic mice that conditionally express miR-145 through Cre recombinase-mediated activation. Characterization of individual founder lines indicates that overexpression of miR-145 in the developing cardiovascular system has detrimental effects, with three independent miR-145 transgenic lines exhibiting Cre-dependent lethality. Expression analysis demonstrates that the transgene is robustly expressed and our analysis reveals a novel downstream target of miR-145, Tnnt2. The miR-145 transgenic mice represent a valuable tool to understand the role of miR-145 in diverse cell types and to address its potential as a therapeutic mediator for the treatment of disease.Item Massively Parallel Reporter Assays for High-Throughput In Vivo Analysis of Cis-Regulatory Elements(MDPI, 2023-03-29) Zheng, Yanjiang; VanDusen, Nathan J.; Pediatrics, School of MedicineThe rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.Item miR‐145 transgenic mice develop cardiopulmonary complications leading to postnatal death(Wiley, 2021-09) Thomas, Shelby; Manivannan, Sathiyanarayanan; Sawant, Dwitiya; Kodigepalli, Karthik M.; Garg, Vidu; Conway, Simon J.; Lilly, Brenda; Pediatrics, School of MedicineBackground: Both downregulation and elevation of microRNA miR-145 has been linked to an array of cardiopulmonary phenotypes, and a host of studies suggest that it is an important contributor in governing the differentiation of cardiac and vascular smooth muscle cell types. Methods and results: To better understand the role of elevated miR-145 in utero within the cardiopulmonary system, we utilized a transgene to overexpress miR-145 embryonically in mice and examined the consequences of this lineage-restricted enhanced expression. Overexpression of miR-145 has detrimental effects that manifest after birth as overexpressor mice are unable to survive beyond postnatal day 18. The miR-145 expressing mice exhibit respiratory distress and fail to thrive. Gross analysis revealed an enlarged right ventricle, and pulmonary dysplasia with vascular hypertrophy. Single cell sequencing of RNA derived from lungs of control and miR-145 transgenic mice demonstrated that miR-145 overexpression had global effects on the lung with an increase in immune cells and evidence of leukocyte extravasation associated with vascular inflammation. Conclusions: These data provide novel findings that demonstrate a pathological role for miR-145 in the cardiopulmonary system that extends beyond its normal function in governing smooth muscle differentiation.