- Browse by Subject
Browsing by Subject "Cardiotoxicity"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Author Correction: α-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice(Springer Nature, 2022) Chen, Xin; Liu, Jie; Liu, Jie; Wang, Wen-Jia; Lai, Wen-Jing; Li, Shu-Hui; Deng, Ya-Fei; Zhou, Jian-Zhi; Yang, Sheng-Qian; Liu, Ying; Shou, Wei-Nian; Cao, Da-Yan; Li, Xiao-Hui; Pediatrics, School of MedicineThis corrects the article "α-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice" in volume 41 on page 1416.Item Cardiovascular Magnetic Resonance Imaging in Patients With Ibrutinib-Associated Cardiotoxicity(American Medical Association, 2023) Buck, Benjamin; Chum, Aaron P.; Patel, Mitkumar; Carter, Rebecca; Nawaz, Haseeb; Yildiz, Vedat; Ruz, Patrick; Wiczer, Tracy; Rogers, Kerry A.; Awan, Farrukh T.; Bhat, Seema; Guha, Avirup; Kittai, Adam S.; Simonetti, Orlando P.; Raman, Subha V.; Wallace, Grant; Sanchez, Reynaldo; Bonsu, Janice M.; Gambril, John; Haddad, Devin; Mann, James; Wei, Lai; Kola-Kehinde, Onaopepo; Byrd, John C.; Woyach, Jennifer A.; Addison, Daniel; Medicine, School of MedicineImportance: Ibrutinib has been associated with serious cardiotoxic arrhythmias. In preclinical models, these events are paralleled or proceeded by diffuse myocardial injury (inflammation and fibrosis). Yet whether this is seen in patients or has implications for future cardiotoxic risk is unknown. Objective: To assess the incidence and outcomes of myocardial injury among patients with ibrutinib-related cardiotoxicity. Design, setting, and participants: This cohort study included consecutive patients treated with ibrutinib from 2012 to 2019, phenotyped using cardiovascular magnetic resonance (CMR) from a large US Comprehensive Cancer Center registry. Exposures: Ibrutinib treatment for cancer control. Main outcomes and measures: The primary outcome was the presence of late gadolinium enhancement (LGE) fibrosis. The secondary outcome was the occurrence of major adverse cardiac events (MACE), defined as atrial fibrillation, heart failure, symptomatic ventricular arrhythmias, and sudden death of probable or definite ibrutinib association after CMR. We also assessed parametric-mapping subclinical fibrosis (native-T1, extracellular volume fraction) and inflammation/edema (max-T2) measures. Cardiovascular magnetic resonance measures were compared with those obtained in similar consecutive patients with cancer without ibrutinib treatment (pretreatment controls). Observed measures were also compared with similar-aged broad population rates (general-population controls) and a broader pool of cardiovascular disease (CVD) risk-matched cancer controls. Multivariable regression was used to assess the association between CMR measures and MACE. Results: Overall, 49 patients treated with ibrutinib were identified, including 33 imaged after treatment initiation (mean [SD] age, 65 [10] years, 9 [27%] with hypertension, and 23 [69.7%] with index-arrhythmias); median duration of ibrutinib-use was 14 months. The mean (SD) pretreatment native T1 was 977.0 (73.0) ms, max-T2 56.5 (4.0) ms, and 4 (13.3%) had LGE. Posttreatment initiation, mean (SD) native T1 was 1033.7 (48.2) ms, max-T2 61.5 (4.8) ms, and 17 (54.8%) had LGE (P < .001, P = .01, and P < .001, respectively, pre- vs post-ibrutinib treatment). Native T12SDs was elevated in 9 (28.6%), and max-T22SDs in 21 (63.0%), respectively. Cardiovascular magnetic resonance measures were highest in those with suspected toxic effects (P = .01 and P = .01, respectively). There was no association between traditional CVD-risk or cancer-treatment status and abnormal CMR measures. Among those without traditional CVD, 16 (58.6%) had LGE vs 38 (13.3%) in matched-controls (relative-risk, 4.8; P < .001). Over a median follow-up of 19 months, 13 (39.4%) experienced MACE. In multivariable models inclusive of traditional CVD risk factors, LGE (hazard ratio [HR], 4.9; P = .04), and native-T12SDs (HR, 3.3; P = .05) associated with higher risks of MACE. Conclusions and relevance: In this cohort study, myocardial injury was common in ibrutinib users, and its presence was associated with higher cardiotoxic risk.Item Mean Heart Dose Is an Inadequate Surrogate for Left Anterior Descending Coronary Artery Dose and the Risk of Major Adverse Cardiac Events in Lung Cancer Radiation Therapy(Elsevier, 2021) Atkins, Katelyn M.; Bitterman, Danielle S.; Chaunzwa, Tafadzwa L.; Kozono, David E.; Baldini, Elizabeth H.; Aerts, Hugo J. W. L.; Tamarappoo, Balaji K.; Hoffmann, Udo; Nohria, Anju; Mak, Raymond H.; Radiation Oncology, School of MedicinePurpose: Mean heart dose (MHD) over 10 Gy and left anterior descending (LAD) coronary artery volume (V) receiving 15 Gy (V15Gy) greater than 10% can significantly increase the risk of major adverse cardiac events (MACE) in patients with non-small cell lung cancer (NSCLC). We sought to characterize the discordance between MHD and LAD dose and the association of this classification on the risk of MACE after radiation therapy. Methods and materials: The coefficient of determination for MHD and LAD V15Gy was calculated in this retrospective analysis of 701 patients with locally advanced NSCLC treated with radiation therapy. Four groups were defined on the basis of high or low MHD (≥10 Gy vs <10 Gy) and LAD V15Gy (≥10% vs <10%). MACE (unstable angina, heart failure, myocardial infarction, coronary revascularization, and cardiac death) cumulative incidence was estimated, and Fine and Gray regressions were performed. Results: The proportion of variance in LAD V15Gy predictable from MHD was only 54.5% (R2 = 0.545). There was discordance (where MHD was high [≥10 Gy] and LAD low [V15Gy < 10%], or vice versa) in 23.1% of patients (n = 162). Two-year MACE estimates were 4.2% (MHDhigh/LADlow), 7.6% (MHDhigh/LADhigh), 1.8% (MHDlow/LADlow), and 13.0% (MHDlow/LADhigh). Adjusting for pre-existing coronary heart disease and other prognostic factors, MHDhigh/LADlow (subdistribution hazard ratio [SHR], 0.34; 95% CI, 0.13-0.93; P = .036) and MHDlow/LADlow (SHR, 0.24; 95% CI, 0.10-0.53; P < .001) were associated with a significantly reduced risk of MACE. Conclusions: MHD is insufficient to predict LAD V15Gy with confidence. When MHD and LAD V15Gy dose exposure is discordant, isolated low LAD V15Gy significantly reduces the risk of MACE in patients with locally advanced NSCLC after radiation therapy, suggesting that the validity of whole heart metrics for optimally predicting cardiac events should be reassessed.Item Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy(Nature Research, 2017-09-12) Han, Xinqiang; Zhou, Yun; Liu, Wendi; Medicine, School of MedicineCurrent oncologic treatments have brought a strong reduction in mortality in cancer patients. However, the cancer therapy-related cardiovascular complications, in particular chemo-therapy and radiation therapy-induced cardiotoxicities are a major cause of morbidity and mortality in people living with or surviving cancer. The simple fact is that all antineoplastic agents and radiation therapy target tumor cells but also result in collateral damage to other tissues including the cardiovascular system. The commonly used anthracycline chemotherapy agents can induce cardiomyopathy and congestive heart failure. Targeted therapies with human epidermal growth factor antibodies, tyrosine kinase inhibitors or vascular endothelial growth factor antibodies, and the antimetabolites also have shown to induce cardiomyopathy and myocardial ischemia. Cardiac arrhythmias and hypertension have been well described with the use of tyrosine kinase inhibitors and antimicrotubule agents. Pericarditis can happen with the use of cyclophosphamide or cytarabine. Mediastinal radiation can cause constrictive pericarditis, myocardial fibrosis, valvular lesions, and coronary artery disease. Despite significant progresses in the understanding of the molecular and pathophysiologic mechanisms behind the cardiovascular toxicity of cancer therapy, there is still lack of evidence-based approach for the monitoring and management of patients. This review will focus mainly on the recent advances in the molecular mechanisms of cardiotoxicity related to common cancer therapies while introducing the concept of cardio-oncology service. Applying the general principles of multi-disciplinary approaches toward the diagnosis, prevention, monitoring, and treatment of cancer therapy-induced cardiomyopathy and heart failure will also be discussed.Item Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function(MDPI, 2016-12-16) Sarmah, Swapnalee; Marrs, James A.; Department of Biology, School of ScienceEnvironmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.Item α-Galactosylceramide and its analog OCH differentially affect the pathogenesis of ISO-induced cardiac injury in mice(Springer Nature, 2020-11) Chen, Xin; Liu, Jie; Liu, Jie; Wang, Wen-Jia; Lai, Wen-Jing; Li, Shu-Hui; Deng, Ya-Fei; Zhou, Jian-Zhi; Yang, Sheng-Qian; Liu, Ying; Shou, Wei-Nian; Cao, Da-Yan; Li, Xiao-Hui; Pediatrics, School of MedicineImmunotherapies for cancers may cause severe and life-threatening cardiotoxicities. The underlying mechanisms are complex and largely elusive. Currently, there are several ongoing clinical trials based on the use of activated invariant natural killer T (iNKT) cells. The potential cardiotoxicity commonly associated with this particular immunotherapy has yet been carefully evaluated. The present study aims to determine the effect of activated iNKT cells on normal and β-adrenergic agonist (isoproterenol, ISO)-stimulated hearts. Mice were treated with iNKT stimulants, α-galactosylceramide (αGC) or its analog OCH, respectively, to determine their effect on ISO-induced cardiac injury. We showed that administration of αGC (activating both T helper type 1 (Th1)- and T helper type 2 (Th2)-liked iNKT cells) significantly accelerated the progressive cardiac injury, leading to enhanced cardiac hypertrophy and cardiac fibrosis with prominent increases in collagen deposition and TGF-β1, IL-6, and alpha smooth muscle actin expression. In contrast to αGC, OCH (mainly activating Th2-liked iNKT cells) significantly attenuated the progression of cardiac injury and cardiac inflammation induced by repeated infusion of ISO. Flow cytometry analysis revealed that αGC promoted inflammatory macrophage infiltration in the heart, while OCH was able to restrain the infiltration. In vitro coculture of αGC- or OCH-pretreated primary peritoneal macrophages with primary cardiac fibroblasts confirmed the profibrotic effect of αGC and the antifibrotic effect of OCH. Our results demonstrate that activating both Th1- and Th2-liked iNKT cells is cardiotoxic, while activating Th2-liked iNKT cells is likely cardiac protective, which has implied key differences among subpopulations of iNKT cells in their response to cardiac pathological stimulation.