- Browse by Subject
Browsing by Subject "Cardiac neural crest"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item HAND transcription factors cooperatively specify the aorta and pulmonary trunk(Elsevier, 2021) Vincentz, Joshua W.; Firulli, Beth A.; Toolan, Kevin P.; Osterwalder, Marco; Pennacchio, Len A.; Firulli, Anthony B.; Pediatrics, School of MedicineCongenital heart defects (CHDs) affecting the cardiac outflow tract (OFT) constitute a significant cause of morbidity and mortality. The OFT develops from migratory cell populations which include the cardiac neural crest cells (cNCCs) and secondary heart field (SHF) derived myocardium and endocardium. The related transcription factors HAND1 and HAND2 have been implicated in human CHDs involving the OFT. Although Hand1 is expressed within the OFT, Hand1 NCC-specific conditional knockout mice (H1CKOs) are viable. Here we show that these H1CKOs present a low penetrance of OFT phenotypes, whereas SHF-specific Hand1 ablation does not reveal any cardiac phenotypes. Further, HAND1 and HAND2 appear functionally redundant within the cNCCs, as a reduction/ablation of Hand2 on an NCC-specific H1CKO background causes pronounced OFT defects. Double conditional Hand1 and Hand2 NCC knockouts exhibit persistent truncus arteriosus (PTA) with 100% penetrance. NCC lineage-tracing and Sema3c in situ mRNA expression reveal that Sema3c-expressing cells are mis-localized, resulting in a malformed septal bridge within the OFTs of H1CKO;H2CKO embryos. Interestingly, Hand1 and Hand2 also genetically interact within the SHF, as SHF H1CKOs on a heterozygous Hand2 background exhibit Ventricular Septal Defects (VSDs) with incomplete penetrance. Previously, we identified a BMP, HAND2, and GATA-dependent Hand1 OFT enhancer sufficient to drive reporter gene expression within the nascent OFT and aorta. Using these transcription inputs as a probe, we identify a novel Hand2 OFT enhancer, suggesting that a conserved BMP-GATA dependent mechanism transcriptionally regulates both HAND factors. These findings support the hypothesis that HAND factors interpret BMP signaling within the cNCCs to cooperatively coordinate OFT morphogenesis.Item Pax3 Hypomorphs Reveal Hidden Pax7 Functional Genetic Compensation in Utero(MDPI, 2022-05-17) Zhou, Hong-Ming; Conway, Simon J.; Dermatology, School of MedicinePax3 and Pax7 transcription factors are paralogs within the Pax gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by Pax7 systemic deletion but systemic Pax3 deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and in utero lethality by E14. However, we previously demonstrated that Pax3 hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null Pax3 allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog Pax7. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted Pax7 both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one Pax7 allele resulted in partial outflow tract defects, and complete loss of Pax7 resulted in full penetrance outflow tract defects and in utero lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. Pax7Cre lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% Pax3 hypomorphs. Finally, genetic cell ablation of Pax7Cre-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.