- Browse by Subject
Browsing by Subject "Cardiac development"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Epigenetics and Heart Development(Frontiers Media, 2021-05-06) George, Rajani M.; Firulli, Anthony B.; Pediatrics, School of MedicineEpigenetic control of gene expression during cardiac development and disease has been a topic of intense research in recent years. Advances in experimental methods to study DNA accessibility, transcription factor occupancy, and chromatin conformation capture technologies have helped identify regions of chromatin structure that play a role in regulating access of transcription factors to the promoter elements of genes, thereby modulating expression. These chromatin structures facilitate enhancer contacts across large genomic distances and function to insulate genes from cis-regulatory elements that lie outside the boundaries for the gene of interest. Changes in transcription factor occupancy due to changes in chromatin accessibility have been implicated in congenital heart disease. However, the factors controlling this process and their role in changing gene expression during development or disease remain unclear. In this review, we focus on recent advances in the understanding of epigenetic factors controlling cardiac morphogenesis and their role in diseases.Item A glimpse of Cre-mediated controversies in epicardial signalling(Oxford University Press, 2013-12-01) Zhang, Wenjun; Firulli, Anthony B.; Shou, Weinian; Pediatrics, School of MedicineItem Hand Factors in Cardiac Development(Wiley, 2019-01) George, Rajani M.; Firulli, Anthony B.; Pediatrics, School of MedicineCongenital heart defects account for 1% of infant mortality and 10% of in utero deaths. As the vertebrate embryo develops, multiple tissue types develop in tandem to morphologically pattern the functional heart. Underlying cardiac development is a network of transcription factors known to tightly control these morphological events. Members of the Twist family of basic helix–loop–helix transcription factors, Hand1 and Hand2, are essential to this process. The expression patterns and functional role of Hand factors in neural crest cells, endocardium, myocardium, and epicardium is indicative of their importance during cardiogenesis; however, to date, an extensive understanding of the transcriptional targets of Hand proteins and their overall mechanism of action remain unclear. In this review, we summarize the recent findings that further outline the crucial functions of Hand factors during heart development and in post‐natal heart function.Item The HAND1 frameshift A126FS mutation does not cause hypoplastic left heart syndrome in mice(Oxford University Press, 2017-12-01) Firulli, Beth A.; Toolan, Kevin P.; Harkin, Jade; Millar, Hannah; Pineda, Santiago; Firulli, Anthony B.; Pediatrics, School of MedicineAims: To test if a human Hand1 frame shift mutation identified in human samples is causative of hypoplastic left heart syndrome (HLHS). Methods and results: HLHS is a poorly understood single ventricle congenital heart defect that affects two to three infants in every 10 000 live births. The aetiologies of HLHS are largely unknown. The basic helix-loop-helix transcription factor HAND1 is required for normal heart development. Interrogation of HAND1 sequence from fixed HLHS tissues identified a somatic frame-shift mutation at Alanine 126 (NP_004812.1 p.Ala126Profs13X defined as Hand1A126fs). Hand1A126fs creates a truncated HAND1 protein that predictively functions as dominant negative. To determine if this mutation is causative of HLHS, we engineered a conditional Hand1A126fs mouse allele. Activation of this allele with Nkx2.5Cre results in E14.5 lethality accompanied by cardiac outflow tract and intraventricular septum abnormalities. Using αMHC-Cre or Mef2CAHF-Cre to activate Hand1A126fs results in reduced phenotype and limited viability. Left ventricles of Hand1A126FS mutant mice are not hypoplastic. Conclusions: Somatically acquired Hand1A126FS mutation is not causative of HLHS. Hand1A126FS mutation does exhibit embryonic lethal cardiac defects that reflect a dominant negative function supporting the critical role of Hand1 in cardiogenesis.Item HAND1 loss-of-function within the embryonic myocardium reveals survivable congenital cardiac defects and adult heart failure(Oxford University Press, 2020-03) Firulli, Beth A.; George, Rajani M.; Harkin, Jade; Toolan, Kevin P.; Gao, Hongyu; Liu, Yunlong; Zhang, Wenjun; Field, Loren J.; Liu, Ying; Shou, Weinian; Payne, Ronald Mark; Rubart-von der Lohe, Michael; Firulli, Anthony B.; Pediatrics, School of MedicineAims: To examine the role of the basic Helix-loop-Helix (bHLH) transcription factor HAND1 in embryonic and adult myocardium. Methods and results: Hand1 is expressed within the cardiomyocytes of the left ventricle (LV) and myocardial cuff between embryonic days (E) 9.5-13.5. Hand gene dosage plays an important role in ventricular morphology and the contribution of Hand1 to congenital heart defects requires further interrogation. Conditional ablation of Hand1 was carried out using either Nkx2.5 knockin Cre (Nkx2.5Cre) or α-myosin heavy chain Cre (αMhc-Cre) driver. Interrogation of transcriptome data via ingenuity pathway analysis reveals several gene regulatory pathways disrupted including translation and cardiac hypertrophy-related pathways. Embryo and adult hearts were subjected to histological, functional, and molecular analyses. Myocardial deletion of Hand1 results in morphological defects that include cardiac conduction system defects, survivable interventricular septal defects, and abnormal LV papillary muscles (PMs). Resulting Hand1 conditional mutants are born at Mendelian frequencies; but the morphological alterations acquired during cardiac development result in, the mice developing diastolic heart failure. Conclusion: Collectively, these data reveal that HAND1 contributes to the morphogenic patterning and maturation of cardiomyocytes during embryogenesis and although survivable, indicates a role for Hand1 within the developing conduction system and PM development.Item Noncoding RNAs as Key Regulators for Cardiac Development and Cardiovascular Diseases(MDPI, 2023-04-12) Kawaguchi, Satoshi; Moukette, Bruno; Hayasaka, Taiki; Haskell, Angela K.; Mah, Jessica; Sepúlveda, Marisa N.; Tang, Yaoliang; Kim, Il-man; Anatomy, Cell Biology and Physiology, School of MedicineNoncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs. In this review, we briefly describe the classification of ncRNAs into microRNAs, long ncRNAs, and circular RNAs. We then discuss their critical roles in cardiac development and CVDs by citing the most up-to-date research articles. More specifically, we summarize the roles of ncRNAs in the formation of the heart tube and cardiac morphogenesis, cardiac mesoderm specification, and embryonic cardiomyocytes and cardiac progenitor cells. We also highlight ncRNAs that have recently emerged as key regulators in CVDs by focusing on six of them. We believe that this review concisely addresses perhaps not all but certainly the major aspects of current progress in ncRNA research in cardiac development and CVDs. Thus, this review would be beneficial for readers to obtain a recent picture of key ncRNAs and their mechanisms of action in cardiac development and CVDs.Item The Role of MCTP2 in Health and Disease(2021-01) Alkhouli, Mohammed A.; Ware, Stephanie M.; Firulli, Anthony B.; Payne, R. Mark; Wek, Ronald C.MCTP2 (multiple C2 domain transmembrane containing protein 2) encodes a protein with poorly understood roles in lipid metabolism and lipid droplet biogenesis. Genetic studies previously identified variations in MCTP2 in conjunction with left ventricular outflow tract obstructive forms of congenital heart disease (CHD). This dissertation research aimed to delineate the biomedical significance of Mctp2 by investigating its expression and consequences of its genetic deletion in mouse models. Temporal and spatial expression of Mctp2 was investigated by RT-PCR and in-situ hybridization. A novel isoform, designated as isoform 2 in mice, results from alternative pre-mRNA splicing. Similar levels of Mctp2 isoforms 1 and 2 are present in embryonic tissues, whereas isoform 1 is preferentially expressed in adult tissues with high lipid metabolism. During mouse embryonic development, in-situ hybridization suggests expression of Mctp2 at the gut tube, liver bud and near the pharyngeal arches from E8.5 – E10.5. Given association of MCTP2 with CHD, the biological significance of Mctp2 was addressed using gene trap (GT) and conditional mouse models. Survival of Mctp2 GT mice was dependent on the genetic background strain, suggesting a role for strain-specific modifiers. Conditional knockout of Mctp2 in cardiac progenitor cells displayed no effect on survival. The role of Mctp2 in cardiac development remains to be delineated. The role of Mctp2 in cardiac function was addressed in both mouse models. Initial findings suggest Mctp2 allele dosage effects on the development of heart failure. GT mice lacking one, or both, copies of Mctp2 display cardiac systolic dysfunction, with upregulation of heart failure markers at 50 weeks of age in heterozygotes and increases in cardiac fibrosis in homozygotes. Systemic conditional deletion of Mctp2 did not show heart failure phenotypes using the strain protective from lethality. However, cardiac specific deletion of Mctp2 using the Nkx2.5-Cre driver, a line that is sensitized for cardiac dysfunction, led to decreased ejection fraction and fractional shortening in mice with conditional deletion of both copies of Mctp2 as well as Mctp2 dosage dependent penetrance of cardiac dilation. These studies of knockout mice suggest a role for Mctp2 in maintenance of cardiac function and possible genetic interaction with Nkx2.5.Item Shp2 deletion in post-migratory neural crest cells results in impaired cardiac sympathetic innervation(2014-05) Lajiness, Jacquelyn D.; Ingram, David A., Jr.; Harrington, Maureen A.; Mirmira, Raghavendra G.; Payne, Mark; Rubart, MichaelAutonomic innervation of the heart begins in utero and continues during the neonatal phase of life. A balance between the sympathetic and parasympathetic arms of the autonomic nervous system is required to regulate heart rate as well as the force of each contraction. Our lab studies the development of sympathetic innervation of the early postnatal heart in a conditional knockout (cKO) of Src homology protein tyrosine phosphatase 2 (Shp2). Shp2 is a ubiquitously expressed non-receptor phosphatase involved in a variety of cellular functions including survival, proliferation, and differentiation. We targeted Shp2 in post-migratory neural crest (NC) lineages using our novel Periostin-Cre. This resulted in a fully penetrant mouse model of diminished cardiac sympathetic innervation and concomitant bradycardia that progressively worsen. Shp2 is thought to mediate its basic cellular functions through a plethora of signaling cascades including extracellular signal-regulated kinases (ERK) 1 and 2. We hypothesize that abrogation of downstream ERK1/2 signaling in NC lineages is primarily responsible for the failed sympathetic innervation phenotype observed in our mouse model. Shp2 cKOs are indistinguishable from control littermates at birth and exhibit no gross structural cardiac anomalies; however, in vivo electrocardiogram (ECG) characterization revealed sinus bradycardia that develops as the Shp2 cKO ages. Significantly, 100% of Shp2 cKOs die within 3 weeks after birth. Characterization of the expression pattern of the sympathetic nerve marker tyrosine hydroxylase (TH) revealed a loss of functional sympathetic ganglionic neurons and reduction of cardiac sympathetic axon density in Shp2 cKOs. Shp2 cKOs exhibit lineage-specific suppression of activated pERK1/2 signaling, but not of other downstream targets of Shp2 such as pAKT (phosphorylated-Protein kinase B). Interestingly, restoration of pERK signaling via lineage-specific expression of constitutively active MEK1 (Mitogen-activated protein kinase kinase1) rescued TH-positive cardiac innervation as well as heart rate. These data suggest that the diminished sympathetic cardiac innervation and the resulting ECG abnormalities are a result of decreased pERK signaling in post-migratory NC lineages.Item SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects(Elsevier, 2020-08-15) Durbin, Matthew D.; O’Kane, James; Lorentz, Samuel; Firulli, Anthony B.; Ware, Stephanie M.; Pediatrics, School of MedicineCongenital heart disease (CHD) is the most common birth defect, and the leading cause of death due to birth defects, yet causative molecular mechanisms remain mostly unknown. We previously implicated a novel CHD candidate gene, SHROOM3, in a patient with CHD. Using a Shroom3 gene trap knockout mouse (Shroom3gt/gt) we demonstrate that SHROOM3 is downstream of the noncanonical Wnt planar cell polarity signaling pathway (PCP) and loss-of-function causes cardiac defects. We demonstrate Shroom3 expression within cardiomyocytes of the ventricles and interventricular septum from E10.5 onward, as well as within cardiac neural crest cells and second heart field cells that populate the cardiac outflow tract. We demonstrate that Shroom3gt/gt mice exhibit variable penetrance of a spectrum of CHDs that include ventricular septal defects, double outlet right ventricle, and thin left ventricular myocardium. This CHD spectrum phenocopies what is observed with disrupted PCP. We show that during cardiac development SHROOM3 interacts physically and genetically with, and is downstream of, key PCP signaling component Dishevelled 2. Within Shroom3gt/gt hearts we demonstrate disrupted terminal PCP components, actomyosin cytoskeleton, cardiomyocyte polarity, organization, proliferation and morphology. Together, these data demonstrate SHROOM3 functions during cardiac development as an actomyosin cytoskeleton effector downstream of PCP signaling, revealing SHROOM3’s novel role in cardiac development and CHD.