- Browse by Subject
Browsing by Subject "Cardiac arrhythmia"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Cardiac sodium channel palmitoylation regulates channel function and cardiac excitability with implications for arrhythmia generation(2016-12-09) Pei, Zifan; Cummins, Theodore R.; Oxford, Gerry S.; Hudmon, Andy; Rubart-von der Lohe, Michael; Sheets, Patrick L.The cardiac voltage-gated sodium channels (Nav1.5) play a specific and critical role in regulating cardiac electrical activity by initiating and propagating action potentials in the heart. The association between Nav1.5 dysfunctions and generation of various types of cardiac arrhythmia disease, including long-QT3 and Brugada syndrome, is well established. Many types of post-translational modifications have been shown to regulate Nav1.5 biophysical properties, including phosphorylation, glycosylation and ubiquitination. However, our understanding about how post-translational lipid modification affects sodium channel function and cellular excitability, is still lacking. The goal of this dissertation is to characterize Nav1.5 palmitoylation, one of the most common post-translational lipid modification and its role in regulating Nav1.5 function and cardiac excitability. In our studies, three lines of biochemistry evidence were shown to confirm Nav1.5 palmitoylation in both native expression background and heterologous expression system. Moreover, palmitoylation of Nav1.5 can be bidirectionally regulated using 2-Br-palmitate and palmitic acid. Our results also demonstrated that enhanced palmitoylation in both cardiomyocytes and HEK293 cells increases sodium channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation by 2-Br-palmitiate increases closed-state channel inactivation and reduces myocyte excitability. Our computer simulation results confirmed that the observed modification in Nav1.5 gating properties by protein palmitoylation are adequate for the alterations in cardiac excitability. Mutations of potential palmitoylation sites predicted by CSS-Palm bioinformatics tool were introduced into wild-type Nav1.5 constructs using site-directed mutagenesis. Further studies revealed four cysteines (C981, C1176, C1178, C1179) as possible Nav1.5 palmitoylation sites. In particular, a mutation of one of these sites(C981) is associated with cardiac arrhythmia disease. Cysteine to phenylalanine mutation at this site largely enhances of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Therefore, C981 might be the most important site that regulates Nav1.5 palmitoylation. In summary, this dissertation research identified novel post-translational modification on Nav1.5 and revealed important details behind this process. Our data provides new insights on how post-translational lipid modification alters cardiomyocyte excitability and its potential role in arrhythmogenesis.Item Complex Arrhythmia Syndrome in a Knock-In Mouse Model Carrier of the N98S Calm1 Mutation(American Heart Association, 2020) Tsai, Wen-Chin; Guo, Shuai; Olaopa, Michael A.; Field, Loren J.; Yang, Jin; Shen, Changyu; Chang, Ching-Pin; Chen, Peng-Sheng; Rubart, Michael; Medicine, School of MedicineBackground: Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. Methods: Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. Results: Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of β-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed β-adrenergically induced delay of repolarization. β-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. Conclusions: Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. β-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.Item Diabetic Ketoacidosis With Refractory Hypokalemia Leading to Cardiac Arrest(Cureus, 2022-03-24) Grout, Sarah; Maue, Danielle; Berrens, Zachary; Swinger, Nathan; Malin, Stefan; Pediatrics, School of MedicineDiabetic ketoacidosis (DKA) is known to cause total body potassium depletion, but during initial presentation, very few patients are hypokalemic, and even fewer patients experience clinical effects. As the correction of acidosis and insulin drive potassium intracellularly, measured serum potassium levels decrease and require repletion. This phenomenon is well described, and severe hypokalemia necessitates delaying insulin therapy. Less well described is the kaliuretic nature of treatments of cerebral edema. We present a case of an adolescent male with new-onset type 2 diabetes who presented in DKA with signs of cerebral edema, hyperosmolarity, and hypokalemia. As insulin and cerebral edema therapy were initiated, his hypokalemia worsened despite significant IV repletion, eventually leading to ventricular tachycardia and cardiac arrest. Over the following 36 hours, the patient received >590 milliequivalents (mEq) of potassium. He was discharged home 12 days after admission without sequelae of his cardiac arrest.Item Noncoding RNAs as Key Regulators for Cardiac Development and Cardiovascular Diseases(MDPI, 2023-04-12) Kawaguchi, Satoshi; Moukette, Bruno; Hayasaka, Taiki; Haskell, Angela K.; Mah, Jessica; Sepúlveda, Marisa N.; Tang, Yaoliang; Kim, Il-man; Anatomy, Cell Biology and Physiology, School of MedicineNoncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs. In this review, we briefly describe the classification of ncRNAs into microRNAs, long ncRNAs, and circular RNAs. We then discuss their critical roles in cardiac development and CVDs by citing the most up-to-date research articles. More specifically, we summarize the roles of ncRNAs in the formation of the heart tube and cardiac morphogenesis, cardiac mesoderm specification, and embryonic cardiomyocytes and cardiac progenitor cells. We also highlight ncRNAs that have recently emerged as key regulators in CVDs by focusing on six of them. We believe that this review concisely addresses perhaps not all but certainly the major aspects of current progress in ncRNA research in cardiac development and CVDs. Thus, this review would be beneficial for readers to obtain a recent picture of key ncRNAs and their mechanisms of action in cardiac development and CVDs.Item Will Automated Compressing Devices Save More Lives in Recalcitrant Ventricular Fibrillation Cardiac Arrest?(Cureus, 2022-02-20) Chang, Eduardo E.; Segura, Esther; Vellanki, Sruthi; Kumar, Anup Kumar Trikannad Ashwini; Medicine, School of MedicineWe present a 55-year-old male that developed ventricular fibrillation cardiac arrest in the setting of ST-elevation acute myocardial infarction with recalcitrant and persistent ventricular fibrillation arrest that was successfully resuscitated with a good neurological outcome. The persistent chest compressions were performed in our intensive care unit with an automated chest compression system. The patient required defibrillations and nonstop chest compressions which were the key factors for his survival. This is an example we should consider in all our intensive care units. It's time for a paradigm shift in replacing the compressor of a code team with an automated system. The out-of-hospital evidence in acute care is compelling to bring this technology that has been proven crucial in transports from hospital areas, ambulances, helicopters, and ships to the inpatient ICU bedside. In ventricular tachycardia and ventricular fibrillation (Vt/Vf), the electrical storm created is the perfect example of the need to have the best compressions to provide the best care possible with the best survival and neurological outcomes.