- Browse by Subject
Browsing by Subject "Cardiac differentiation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells(The Company of Biologists, 2021-07) Liu, Juli; Liu, Sheng; Han, Lei; Sheng, Yi; Zhang, Yucheng; Kim, Il-Man; Wan, Jun; Yang, Lei; Pediatrics, School of MedicinePolycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1−/− and JARID2−/− hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved ‘microRNA-1-JARID2’ axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis.Item TGF-β1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells(Springer, 2008-11) Abdel-Latif, Ahmed; Zuba-Surma, Ewa K.; Case, Jamie; Tiwari, Sumit; Hunt, Greg; Ranjan, Smita; Vincent, Robert J.; Srour, Edward F.; Bolli, Roberto; Dawn, Buddhadeb; Department of Pediatrics, IU School of MedicineThe optimal medium for cardiac differentiation of adult primitive cells remains to be established. We quantitatively compared the efficacy of IGF-1, dynorphin B, insulin, oxytocin, bFGF, and TGF-beta1 in inducing cardiomyogenic differentiation. Adult mouse skeletal muscle-derived Sca1+/CD45-/c-kit-/Thy-1+ (SM+) and Sca1-/CD45-/c-kit-/Thy-1+ (SM-) cells were cultured in basic medium (BM; DMEM, FBS, IGF-1, dynorphin B) alone and BM supplemented with insulin, oxytocin, bFGF, or TGF-beta1. Cardiac differentiation was evaluated by the expression of cardiac-specific markers at the mRNA (qRT-PCR) and protein (immunocytochemistry) levels. BM+TGF-beta1 upregulated mRNA expression of Nkx2.5 and GATA-4 after 4 days and Myl2 after 9 days. After 30 days, BM+TGF-beta1 induced the greatest extent of cardiac differentiation (by morphology and expression of cardiac markers) in SM- cells. We conclude that TGF-beta1 enhances cardiomyogenic differentiation in skeletal muscle-derived adult primitive cells. This strategy may be utilized to induce cardiac differentiation as well as to examine the cardiomyogenic potential of adult tissue-derived stem/progenitor cells.