- Browse by Subject
Browsing by Subject "Capsule Network"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Residual Capsule Network(2019-08) Bhamidi, Sree Bala Shruthi; El-Sharkawy, Mohamed; King, Brian; Rizkalla, MaherThe Convolutional Neural Network (CNN) have shown a substantial improvement in the field of Machine Learning. But they do come with their own set of drawbacks. Capsule Networks have addressed the limitations of CNNs and have shown a great improvement by calculating the pose and transformation of the image. Deeper networks are more powerful than shallow networks but at the same time, more difficult to train. Residual Networks ease the training and have shown evidence that they can give good accuracy with considerable depth. Putting the best of Capsule Network and Residual Network together, we present Residual Capsule Network and 3-Level Residual Capsule Network, a framework that uses the best of Residual Networks and Capsule Networks. The conventional Convolutional layer in Capsule Network is replaced by skip connections like the Residual Networks to decrease the complexity of the Baseline Capsule Network and seven ensemble Capsule Network. We trained our models on MNIST and CIFAR-10 datasets and have seen a significant decrease in the number of parameters when compared to the Baseline models.Item Squeeze and Excite Residual Capsule Network for Embedded Edge Devices(2022-08) Naqvi, Sami; El-Sharkawy, Mohamed; King, Brian; Rizkalla, MaherDuring recent years, the field of computer vision has evolved rapidly. Convolutional Neural Networks (CNNs) have become the chosen default for implementing computer vision tasks. The popularity is based on how the CNNs have successfully performed the well-known computer vision tasks such as image annotation, instance segmentation, and others with promising outcomes. However, CNNs have their caveats and need further research to turn them into reliable machine learning algorithms. The disadvantages of CNNs become more evident as the approach to breaking down an input image becomes apparent. Convolutional neural networks group blobs of pixels to identify objects in a given image. Such a technique makes CNNs incapable of breaking down the input images into sub-parts, which could distinguish the orientation and transformation of objects and their parts. The functions in a CNN are competent at learning only the shift-invariant features of the object in an image. The discussed limitations provides researchers and developers a purpose for further enhancing an effective algorithm for computer vision. The opportunity to improve is explored by several distinct approaches, each tackling a unique set of issues in the convolutional neural network’s architecture. The Capsule Network (CapsNet) which brings an innovative approach to resolve issues pertaining to affine transformations by sharing transformation matrices between the different levels of capsules. While, the Residual Network (ResNet) introduced skip connections which allows deeper networks to be more powerful and solves vanishing gradient problem. The motivation of these fusion of these advantageous ideas of CapsNet and ResNet with Squeeze and Excite (SE) Block from Squeeze and Excite Network, this research work presents SE-Residual Capsule Network (SE-RCN), an efficient neural network model. The proposed model, replaces the traditional convolutional layer of CapsNet with skip connections and SE Block to lower the complexity of the CapsNet. The performance of the model is demonstrated on the well known datasets like MNIST and CIFAR-10 and a substantial reduction in the number of training parameters is observed in comparison to similar neural networks. The proposed SE-RCN produces 6.37 Million parameters with an accuracy of 99.71% on the MNIST dataset and on CIFAR-10 dataset it produces 10.55 Million parameters with 83.86% accuracy.