- Browse by Subject
Browsing by Subject "Cancer microenvironment"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Acid–base Homeostasis and Implications to the Phenotypic Behaviors of Cancer(Elsevier, 2023) Zhou, Yi; Chang, Wennan; Lu, Xiaoyu; Wang, Jin; Zhang, Chi; Xu, Ying; Medical and Molecular Genetics, School of MedicineAcid-base homeostasis is a fundamental property of living cells, and its persistent disruption in human cells can lead to a wide range of diseases. In this study, we conducted a computational modeling analysis of transcriptomic data of 4750 human tissue samples of 9 cancer types in The Cancer Genome Atlas (TCGA) database. Built on our previous study, we quantitatively estimated the average production rate of OH- by cytosolic Fenton reactions, which continuously disrupt the intracellular pH (pHi) homeostasis. Our predictions indicate that all or at least a subset of 43 reprogrammed metabolisms (RMs) are induced to produce net protons (H+) at comparable rates of Fenton reactions to keep the pHi stable. We then discovered that a number of well-known phenotypes of cancers, including increased growth rate, metastasis rate, and local immune cell composition, can be naturally explained in terms of the Fenton reaction level and the induced RMs. This study strongly suggests the possibility to have a unified framework for studies of cancer-inducing stressors, adaptive metabolic reprogramming, and cancerous behaviors. In addition, strong evidence is provided to demonstrate that a popular view that Na+/H+ exchangers along with lactic acid exporters and carbonic anhydrases are responsible for the intracellular alkalization and extracellular acidification in cancer may not be justified.Item Cancer associated fibroblasts serve as an ovarian cancer stem cell niche through noncanonical Wnt5a signaling(Springer Nature, 2024-01-08) Fang, Yiming; Xiao, Xue; Wang, Ji; Dasari, Subramanyam; Pepin, David; Nephew, Kenneth P.; Zamarin, Dmitriy; Mitra, Anirban K.; Medicine, School of MedicineFrequent relapse and chemoresistance cause poor outcome in ovarian cancer (OC) and cancer stem cells (CSCs) are important contributors. While most studies focus exclusively on CSCs, the role of the microenvironment in providing optimal conditions to maintain their tumor-initiating potential remains poorly understood. Cancer associated fibroblasts (CAFs) are a major constituent of the OC tumor microenvironment and we show that CAFs and CSCs are enriched following chemotherapy in patient tumors. CAFs significantly increase OC cell resistance to carboplatin. Using heterotypic CAF-OC cocultures and in vivo limiting dilution assay, we confirm that the CAFs act by enriching the CSC population. CAFs increase the symmetric division of CSCs as well as the dedifferentiation of bulk OC cells into CSCs. The effect of CAFs is limited to OC cells in their immediate neighborhood, which can be prevented by inhibiting Wnt. Analysis of single cell RNA-seq data from OC patients reveal Wnt5a as the highest expressed Wnt in CAFs and that certain subpopulations of CAFs express higher levels of Wnt5a. Our findings demonstrate that Wnt5a from CAFs activate a noncanonical Wnt signaling pathway involving the ROR2/PKC/CREB1 axis in the neighboring CSCs. While canonical Wnt signaling is found to be predominant in interactions between cancer cells in patients, non-canonical Wnt pathway is activated by the CAF-OC crosstalk. Treatment with a Wnt5a inhibitor sensitizes tumors to carboplatin in vivo. Together, our results demonstrate a novel mechanism of CSC maintenance by signals from the microenvironmental CAFs, which can be targeted to treat OC chemoresistance and relapse.Item Characterizing the regulatory Fas (CD95) epitope critical for agonist antibody targeting and CAR-T bystander function in ovarian cancer(Springer Nature, 2023) Mondal, Tanmoy; Gaur, Himanshu; Wamba, Brice E. N.; Michalak, Abby Grace; Stout, Camryn; Watson, Matthew R.; Aleixo, Sophia L.; Singh, Arjun; Condello, Salvatore; Faller, Roland; Leiserowitz, Gary Scott; Bhatnagar, Sanchita; Tushir-Singh, Jogender; Obstetrics and Gynecology, School of MedicineReceptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.Item Effective combinatorial immunotherapy for penile squamous cell carcinoma(Springer Nature, 2020-05-01) Huang, Tianhe; Cheng, Xi; Chahoud, Jad; Sarhan, Ahmed; Tamboli, Pheroze; Rao, Priya; Guo, Ming; Manyam, Ganiraju; Zhang, Li; Xiang, Yu; Han, Leng; Shang, Xiaoying; Deng, Pingna; Luo, Yanting; Lu, Xuemin; Feng, Shan; Ferrer, Magaly Martinez; Wang, Y. Alan; DePinho, Ronald A.; Pettaway, Curtis A.; Lu, Xin; Medicine, School of MedicinePenile squamous cell carcinoma (PSCC) accounts for over 95% of penile malignancies and causes significant mortality and morbidity in developing countries. Molecular mechanisms and therapies of PSCC are understudied, owing to scarcity of laboratory models. Herein, we describe a genetically engineered mouse model of PSCC, by co-deletion of Smad4 and Apc in the androgen-responsive epithelium of the penis. Mouse PSCC fosters an immunosuppressive microenvironment with myeloid-derived suppressor cells (MDSCs) as a dominant population. Preclinical trials in the model demonstrate synergistic efficacy of immune checkpoint blockade with the MDSC-diminishing drugs cabozantinib or celecoxib. A critical clinical problem of PSCC is chemoresistance to cisplatin, which is induced by Pten deficiency on the backdrop of Smad4/Apc co-deletion. Drug screen studies informed by targeted proteomics identify a few potential therapeutic strategies for PSCC. Our studies have established what we believe to be essential resources for studying PSCC biology and developing therapeutic strategies.Item High-dimensional deconstruction of pancreatic cancer identifies tumor microenvironmental and developmental stemness features that predict survival(Springer Nature, 2023-10-19) Storrs, Erik P.; Chati, Prathamesh; Usmani, Abul; Sloan, Ian; Krasnick, Bradley A.; Babbra, Ramandeep; Harris, Peter K.; Sachs, Chloe M.; Qaium, Faridi; Chatterjee, Deyali; Wetzel, Chris; Goedegebuure, Peter; Hollander, Thomas; Anthony, Hephzibah; Ponce, Jennifer; Khaliq, Ateeq M.; Badiyan, Shahed; Kim, Hyun; Denardo, David G.; Lang, Gabriel D.; Cosgrove, Natalie D.; Kushnir, Vladimir M.; Early, Dayna S.; Masood, Ashiq; Lim, Kian-Huat; Hawkins, William G.; Ding, Li; Fields, Ryan C.; Das, Koushik K.; Chaudhuri, Aadel A.; Medicine, School of MedicineNumerous cell states are known to comprise the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME). However, the developmental stemness and co-occurrence of these cell states remain poorly defined. Here, we performed single-cell RNA sequencing (scRNA-seq) on a cohort of treatment-naive PDAC time-of-diagnosis endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) samples (n = 25). We then combined these samples with surgical resection (n = 6) and publicly available samples to increase statistical power (n = 80). Following annotation into 25 distinct cell states, cells were scored for developmental stemness, and a customized version of the Ecotyper tool was used to identify communities of co-occurring cell states in bulk RNA-seq samples (n = 268). We discovered a tumor microenvironmental community comprised of aggressive basal-like malignant cells, tumor-promoting SPP1+ macrophages, and myofibroblastic cancer-associated fibroblasts associated with especially poor prognosis. We also found a developmental stemness continuum with implications for survival that is present in both malignant cells and cancer-associated fibroblasts (CAFs). We further demonstrated that high-dimensional analyses predictive of survival are feasible using standard-of-care, time-of-diagnosis EUS-FNB specimens. In summary, we identified tumor microenvironmental and developmental stemness characteristics from a high-dimensional gene expression analysis of PDAC using human tissue specimens, including time-of-diagnosis EUS-FNB samples. These reveal new connections between tumor microenvironmental composition, CAF and malignant cell stemness, and patient survival that could lead to better upfront risk stratification and more personalized upfront clinical decision-making.Item Lysophosphatidic acid modulates ovarian cancer multicellular aggregate assembly and metastatic dissemination(Nature Publishing group, 2020-07-02) Klymenko, Yuliya; Bos, Brandi; Campbell, Leigh; Loughran, Elizabeth; Liu, Yueying; Yang, Jing; Kim, Oleg; Stack, M. Sharon; Obstetrics and Gynecology, School of MedicineEpithelial ovarian cancer (EOC) metastasis occurs by exfoliation of cells and multicellular aggregates (MCAs) from the tumor into the peritoneal cavity, adhesion to and retraction of peritoneal mesothelial cells and subsequent anchoring. Elevated levels of lysophosphatidic acid (LPA) have been linked to aberrant cell proliferation, oncogenesis, and metastasis. LPA disrupts junctional integrity and epithelial cohesion in vitro however, the fate of free-floating cells/MCAs and the response of host peritoneal tissues to LPA remain unclear. EOC MCAs displayed significant LPA-induced changes in surface ultrastructure with the loss of cell surface protrusions and poor aggregation, resulting in increased dissemination of small clusters compared to untreated control MCAs. LPA also diminished the adhesive capacity of EOC single cells and MCAs to murine peritoneal explants and impaired MCA survival and mesothelial clearance competence. Peritoneal tissues from healthy mice injected with LPA exhibited enhanced mesothelial surface microvilli. Ultrastructural alterations were associated with restricted peritoneal susceptibility to metastatic colonization by single cells as well as epithelial-type MCAs. The functional consequence is an LPA-induced dissemination of small mesenchymal-type clusters, promoting a miliary mode of peritoneal seeding that complicates surgical removal and is associated with worse prognosis.Item Molecular and clinical effects of aromatase inhibitor therapy on skeletal muscle function in early-stage breast cancer(Springer Nature, 2024-01-10) Seibert, Tara A.; Shi, Lei; Althouse, Sandra; Hoffman, Richard; Schneider, Bryan P.; Russ, Kristen A.; Altherr, Cody A.; Warden, Stuart J.; Guise, Theresa A.; Coggan, Andrew R.; Ballinger, Tarah J.; Exercise & Kinesiology, School of Health and Human SciencesWe evaluated biochemical changes in skeletal muscle of women with breast cancer initiating aromatase inhibitors (AI), including oxidation of ryanodine receptor RyR1 and loss of stabilizing protein calstabin1, and detailed measures of muscle function. Fifteen postmenopausal women with stage I–III breast cancer planning to initiate AI enrolled. Quadriceps muscle biopsy, dual-energy x-ray absorptiometry, isokinetic dynamometry, Short Physical Performance Battery, grip strength, 6-min walk, patient-reported outcomes, and serologic measures of bone turnover were assessed before and after 6 months of AI. Post-AI exposure, oxidation of RyR1 significantly increased (0.23 ± 0.37 vs. 0.88 ± 0.80, p < 0.001) and RyR1-bound calstabin1 significantly decreased (1.69 ± 1.53 vs. 0.74 ± 0.85, p < 0.001), consistent with dysfunctional calcium channels in skeletal muscle. Grip strength significantly decreased at 6 months. No significant differences were seen in isokinetic dynamometry measures of muscle contractility, fatigue resistance, or muscle recovery post-AI exposure. However, there was significant correlation between oxidation of RyR1 with muscle power (r = 0.60, p = 0.02) and muscle fatigue (r = 0.57, p = 0.03). Estrogen deprivation therapy for breast cancer resulted in maladaptive changes in skeletal muscle, consistent with the biochemical signature of dysfunctional RyR1 calcium channels. Future studies will evaluate longer trajectories of muscle function change and include other high bone turnover states, such as bone metastases.Item Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression(Springer Nature, 2024) Hu, Junyi; Wang, Shao-Gang; Hou, Yaxin; Chen, Zhaohui; Liu, Lilong; Li, Ruizhi; Li, Nisha; Zhou, Lijie; Yang, Yu; Wang, Liping; Wang, Liang; Yang, Xiong; Lei, Yichen; Deng, Changqi; Li, Yang; Deng, Zhiyao; Ding, Yuhong; Kuang, Yingchun; Yao, Zhipeng; Xun, Yang; Li, Fan; Li, Heng; Hu, Jia; Liu, Zheng; Wang, Tao; Hao, Yi; Jiao, Xuanmao; Guan, Wei; Tao, Zhen; Ren, Shancheng; Chen, Ke; Pathology and Laboratory Medicine, School of MedicineClear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.Item Single-cell profiling guided combinatorial immunotherapy for fast-evolving CDK4/6 inhibitor-resistant HER2-positive breast cancer(Springer Nature, 2019-08-23) Wang, Qingfei; Guldner, Ian H.; Golomb, Samantha M.; Sun, Longhua; Harris, Jack A.; Lu, Xin; Zhang, Siyuan; Medicine, School of MedicineAcquired resistance to targeted cancer therapy is a significant clinical challenge. In parallel with clinical trials combining CDK4/6 inhibitors to treat HER2+ breast cancer, we sought to prospectively model tumor evolution in response to this regimen in vivo and identify a clinically actionable strategy to combat drug resistance. Despite a promising initial response, acquired resistance emerges rapidly to the combination of anti-HER2/neu antibody and CDK4/6 inhibitor Palbociclib. Using high-throughput single-cell profiling over the course of treatments, we reveal a distinct immunosuppressive immature myeloid cell (IMC) population to infiltrate the resistant tumors. Guided by single-cell transcriptome analysis, we demonstrate that combination of IMC-targeting tyrosine kinase inhibitor cabozantinib and immune checkpoint blockade enhances anti-tumor immunity, and overcomes the resistance. Furthermore, sequential combinatorial immunotherapy enables a sustained control of the fast-evolving CDK4/6 inhibitor-resistant tumors. Our study demonstrates a translational framework for treating rapidly evolving tumors through preclinical modeling and single-cell analyses.Item SSMD: a semi-supervised approach for a robust cell type identification and deconvolution of mouse transcriptomics data(Oxford University Press, 2021) Lu, Xiaoyu; Tu, Szu-Wei; Chang, Wennan; Wan, Changlin; Wang, Jiashi; Zang, Yong; Ramdas, Baskar; Kapur, Reuben; Lu, Xiongbin; Cao, Sha; Zhang, Chi; Medical and Molecular Genetics, School of MedicineDeconvolution of mouse transcriptomic data is challenged by the fact that mouse models carry various genetic and physiological perturbations, making it questionable to assume fixed cell types and cell type marker genes for different data set scenarios. We developed a Semi-Supervised Mouse data Deconvolution (SSMD) method to study the mouse tissue microenvironment. SSMD is featured by (i) a novel nonparametric method to discover data set-specific cell type signature genes; (ii) a community detection approach for fixing cell types and their marker genes; (iii) a constrained matrix decomposition method to solve cell type relative proportions that is robust to diverse experimental platforms. In summary, SSMD addressed several key challenges in the deconvolution of mouse tissue data, including: (i) varied cell types and marker genes caused by highly divergent genotypic and phenotypic conditions of mouse experiment; (ii) diverse experimental platforms of mouse transcriptomics data; (iii) small sample size and limited training data source and (iv) capable to estimate the proportion of 35 cell types in blood, inflammatory, central nervous or hematopoietic systems. In silico and experimental validation of SSMD demonstrated its high sensitivity and accuracy in identifying (sub) cell types and predicting cell proportions comparing with state-of-the-arts methods. A user-friendly R package and a web server of SSMD are released via https://github.com/xiaoyulu95/SSMD.