- Browse by Subject
Browsing by Subject "Calmodulin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry(Oxford University Press, 2016-06-06) Crotti, Lia; Spazzolini, Carla; Tester, David J; Ghidoni, Alice; Baruteau, Alban-Elouen; Beckmann, Britt-Maria; Behr, Elijah R; Bennett, Jeffrey S; Bezzina, Connie R; Bhuiyan, Zahurul A; Celiker, Alpay; Cerrone, Marina; Dagradi, Federica; De Ferrari, Gaetano M; Etheridge, Susan P; Fatah, Meena; Garcia-Pavia, Pablo; Al-Ghamdi, Saleh; Hamilton, Robert M; Al-Hassnan, Zuhair N; Horie, Minoru; Jimenez-Jaimez, Juan; Kanter, Ronald J.; Kaski, Juan P.; Kotta, Maria-Christina; Lahrouchi, Najim; Makita, Naomasa; Norrish, Gabrielle; Odland, Hans H.; Ohno, Seiko; Papagiannis, John; Parati, Gianfranco; Sekarski, Nicole; Tveten, Kristian; Vatta, Matteo; Webster, Gregory; Wilde, Arthur A. M.; Wojciak, Julianne; George, Alfred L., Jr; Ackerman, Michael J.; Schwartz, Peter J.; Medical and Molecular Genetics, School of MedicineAims Calmodulinopathies are rare life-threatening arrhythmia syndromes which affect mostly young individuals and are, caused by mutations in any of the three genes (CALM 1–3) that encode identical calmodulin proteins. We established the International Calmodulinopathy Registry (ICalmR) to understand the natural history, clinical features, and response to therapy of patients with a CALM-mediated arrhythmia syndrome. Methods and results A dedicated Case Report File was created to collect demographic, clinical, and genetic information. ICalmR has enrolled 74 subjects, with a variant in the CALM1 (n = 36), CALM2 (n = 23), or CALM3 (n = 15) genes. Sixty-four (86.5%) were symptomatic and the 10-year cumulative mortality was 27%. The two prevalent phenotypes are long QT syndrome (LQTS; CALM-LQTS, n = 36, 49%) and catecholaminergic polymorphic ventricular tachycardia (CPVT; CALM-CPVT, n = 21, 28%). CALM-LQTS patients have extremely prolonged QTc intervals (594 ± 73 ms), high prevalence (78%) of life-threatening arrhythmias with median age at onset of 1.5 years [interquartile range (IQR) 0.1–5.5 years] and poor response to therapies. Most electrocardiograms (ECGs) show late onset peaked T waves. All CALM-CPVT patients were symptomatic with median age of onset of 6.0 years (IQR 3.0–8.5 years). Basal ECG frequently shows prominent U waves. Other CALM-related phenotypes are idiopathic ventricular fibrillation (IVF, n = 7), sudden unexplained death (SUD, n = 4), overlapping features of CPVT/LQTS (n = 3), and predominant neurological phenotype (n = 1). Cardiac structural abnormalities and neurological features were present in 18 and 13 patients, respectively. Conclusion Calmodulinopathies are largely characterized by adrenergically-induced life-threatening arrhythmias. Available therapies are disquietingly insufficient, especially in CALM-LQTS. Combination therapy with drugs, sympathectomy, and devices should be considered.Item Characterization of the interactions of calmodulin with the cardiac ryanodine receptor(1999) Alseikhan, Badr AbdullahItem Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry(Oxford University Press, 2023) Crotti, Lia; Spazzolini, Carla; Nyegaard, Mette; Overgaard, Michael T.; Kotta, Maria-Christina; Dagradi, Federica; Sala, Luca; Aiba, Takeshi; Ayers, Mark D.; Baban, Anwar; Barc, Julien; Beach, Cheyenne M.; Behr, Elijah R.; Bos, J. Martijn; Cerrone, Marina; Covi, Peter; Cuneo, Bettina; Denjoy, Isabelle; Donner, Birgit; Elbert, Adrienne; Eliasson, Håkan; Etheridge, Susan P.; Fukuyama, Megumi; Girolami, Francesca; Hamilton, Robert; Horie, Minoru; Iascone, Maria; Jiménez-Jaimez, Juan; Jensen, Henrik Kjærulf; Kannankeril, Prince J.; Kaski, Juan P.; Makita, Naomasa; Muñoz-Esparza, Carmen; Odland, Hans H.; Ohno, Seiko; Papagiannis, John; Porretta, Alessandra Pia; Prandstetter, Christopher; Probst, Vincent; Robyns, Tomas; Rosenthal, Eric; Rosés-Noguer, Ferran; Sekarski, Nicole; Singh, Anoop; Spentzou, Georgia; Stute, Fridrike; Tfelt-Hansen, Jacob; Till, Jan; Tobert, Kathryn E.; Vinocur, Jeffrey M.; Webster, Gregory; Wilde, Arthur A. M.; Wolf, Cordula M.; Ackerman, Michael J.; Schwartz, Peter J.; Pediatrics, School of MedicineAims: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. Methods and results: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. Conclusion: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.Item Complex Arrhythmia Syndrome in a Knock-In Mouse Model Carrier of the N98S Calm1 Mutation(American Heart Association, 2020) Tsai, Wen-Chin; Guo, Shuai; Olaopa, Michael A.; Field, Loren J.; Yang, Jin; Shen, Changyu; Chang, Ching-Pin; Chen, Peng-Sheng; Rubart, Michael; Medicine, School of MedicineBackground: Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. Methods: Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. Results: Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of β-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed β-adrenergically induced delay of repolarization. β-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. Conclusions: Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. β-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.