- Browse by Subject
Browsing by Subject "Calcium-Binding Proteins"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Clinically relevant variants identified in thoracic aortic aneurysm patients by research exome sequencing(Wiley Blackwell (John Wiley & Sons), 2016-05) Schubert, Jeffrey A.; Landis, Benjamin J.; Shikany, Amy R.; Hinton, Robert B.; Ware, Stephanie M.; Department of Pediatrics, IU School of MedicineThoracic aortic aneurysm (TAA) is a genetically heterogeneous disease involving subclinical and progressive dilation of the thoracic aorta, which can lead to life-threatening complications such as dissection or rupture. Genetic testing is important for risk stratification and identification of at risk family members, and clinically available genetic testing panels have been expanding rapidly. However, when past testing results are normal, there is little evidence to guide decision-making about the indications and timing to pursue additional clinical genetic testing. Results from research based genetic testing can help inform this process. Here we present 10 TAA patients who have a family history of disease and who enrolled in research-based exome testing. Nine of these ten patients had previous clinical genetic testing that did not identify the cause of disease. We sought to determine the number of rare variants in 23 known TAA associated genes identified by research-based exome testing. In total, we found 10 rare variants in six patients. Likely pathogenic variants included a TGFB2 variant in one patient and a SMAD3 variant in another. These variants have been reported previously in individuals with similar phenotypes. Variants of uncertain significance of particular interest included novel variants in MYLK and MFAP5, which were identified in a third patient. In total, clinically reportable rare variants were found in 6/10 (60%) patients, with at least 2/10 (20%) patients having likely pathogenic variants identified. These data indicate that consideration of re-testing is important in TAA patients with previous negative or inconclusive results.Item Exocytosis Protein DOC2B as a Biomarker of Type 1 Diabetes(Oxford University Press, 2018-05-01) Aslamy, Arianne; Oh, Eunjin; Ahn, Miwon; Moin, Abu Saleh Md; Chang, Mariann; Duncan, Molly; Hacker-Stratton, Jeannette; El-Shahawy, Mohamed; Kandeel, Fouad; DiMeglio, Linda A.; Thurmond, Debbie C.; Cellular and Integrative Physiology, School of MedicineContext: Efforts to preserve β-cell mass in the preclinical stages of type 1 diabetes (T1D) are limited by few blood-derived biomarkers of β-cell destruction. Objective: Platelets are proposed sources of blood-derived biomarkers for a variety of diseases, and they show distinct proteomic changes in T1D. Thus, we investigated changes in the exocytosis protein, double C2 domain protein-β (DOC2B) in platelets and islets from T1D humans, and prediabetic nonobese diabetic (NOD) mice. Design, Patients, and Main Outcome Measure: Protein levels of DOC2B were assessed in platelets and islets from prediabetic NOD mice and humans, with and without T1D. Seventeen new-onset T1D human subjects (10.3 ± 3.8 years) were recruited immediately following diagnosis, and platelet DOC2B levels were compared with 14 matched nondiabetic subjects (11.4 ± 2.9 years). Furthermore, DOC2B levels were assessed in T1D human pancreatic tissue samples, cytokine-stimulated human islets ex vivo, and platelets from T1D subjects before and after islet transplantation. Results: DOC2B protein abundance was substantially reduced in prediabetic NOD mouse platelets, and these changes were mirrored in the pancreatic islets from the same mice. Likewise, human DOC2B levels were reduced over twofold in platelets from new-onset T1D human subjects, and this reduction was mirrored in T1D human islets. Cytokine stimulation of normal islets reduced DOC2B expression ex vivo. Remarkably, platelet DOC2B levels increased after islet transplantation in patients with T1D. Conclusions: Reduction of DOC2B is an early feature of T1D, and DOC2B abundance may serve as a valuable in vivo indicator of β-cell mass and an early biomarker of T1D.Item Exome-chip association analysis of intracranial aneurysms(American Academy of Neurology, 2020-02-04) van 't Hof, Femke N.G.; Lai, Dongbing; van Setten, Jessica; Bots, Michiel L.; Vaartjes, Ilonca; Broderick, Joseph; Woo, Daniel; Foroud, Tatiana; Rinkel, Gabriel J.E.; de Bakker, Paul I.W.; Ruigrok, Ynte M.; Medical and Molecular Genetics, School of MedicineObjective: To investigate to what extent low-frequency genetic variants (with minor allele frequencies <5%) affect the risk of intracranial aneurysms (IAs). Methods: One thousand fifty-six patients with IA and 2,097 population-based controls from the Netherlands were genotyped with the Illumina HumanExome BeadChip. After quality control (QC) of samples and single nucleotide variants (SNVs), we conducted a single variant analysis using the Fisher exact test. We also performed the variable threshold (VT) test and the sequence kernel association test (SKAT) at different minor allele count (MAC) thresholds of >5 and >0 to test the hypothesis that multiple variants within the same gene are associated with IA risk. Significant results were tested in a replication cohort of 425 patients with IA and 311 controls, and results of the 2 cohorts were combined in a meta-analysis. Results: After QC, 995 patients with IA and 2,080 controls remained for further analysis. The single variant analysis comprising 46,534 SNVs did not identify significant loci at the genome-wide level. The gene-based tests showed a statistically significant association for fibulin 2 (FBLN2) (best p = 1 × 10-6 for the VT test, MAC >5). Associations were not statistically significant in the independent but smaller replication cohort (p > 0.57) but became slightly stronger in a meta-analysis of the 2 cohorts (best p = 4.8 × 10-7 for the SKAT, MAC ≥1). Conclusion: Gene-based tests indicated an association for FBLN2, a gene encoding an extracellular matrix protein implicated in vascular wall remodeling, but independent validation in larger cohorts is warranted. We did not identify any significant associations for single low-frequency genetic variants.Item Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during Toxoplasma gondii egress(Public Library of Science (PLoS), 2015) Gaji, Rajshekhar Y.; Johnson, Derrick E.; Treeck, Moritz; Wang, Mu; Hudmon, Andy; Arrizabalaga, Gustavo; Department of Pharmacology and Toxicology, IU School of MedicineMembers of the family of calcium dependent protein kinases (CDPK's) are abundant in certain pathogenic parasites and absent in mammalian cells making them strong drug target candidates. In the obligate intracellular parasite Toxoplasma gondii TgCDPK3 is important for calcium dependent egress from the host cell. Nonetheless, the specific substrate through which TgCDPK3 exerts its function during egress remains unknown. To close this knowledge gap we applied the proximity-based protein interaction trap BioID and identified 13 proteins that are either near neighbors or direct interactors of TgCDPK3. Among these was Myosin A (TgMyoA), the unconventional motor protein greatly responsible for driving the gliding motility of this parasite, and whose phosphorylation at serine 21 by an unknown kinase was previously shown to be important for motility and egress. Through a non-biased peptide array approach we determined that TgCDPK3 can specifically phosphorylate serines 21 and 743 of TgMyoA in vitro. Complementation of the TgmyoA null mutant, which exhibits a delay in egress, with TgMyoA in which either S21 or S743 is mutated to alanine failed to rescue the egress defect. Similarly, phosphomimetic mutations in the motor protein overcome the need for TgCDPK3. Moreover, extracellular Tgcdpk3 mutant parasites have motility defects that are complemented by expression of S21+S743 phosphomimetic of TgMyoA. Thus, our studies establish that phosphorylation of TgMyoA by TgCDPK3 is responsible for initiation of motility and parasite egress from the host-cell and provides mechanistic insight into how this unique kinase regulates the lytic cycle of Toxoplasma gondii.Item Transitions of protein traffic from cardiac ER to junctional SR(Elsevier, 2015-04) Sleiman, Naama H.; McFarland, Timothy P.; Jones, Larry R.; Cala, Steven E.; Department of Medicine, IU School of MedicineThe junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca(2+) release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQ-DsRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed ((del)TRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and (del)TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic.Item Use of the baculovirus expression system to investigate phospholamban regulation of the cardiac calcium pump(1998) Autry, Joseph Michael