- Browse by Subject
Browsing by Subject "Calcium oxalate"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Geobiology reveals how human kidney stones dissolve in vivo(Springer Nature, 2018-09-13) Sivaguru, Mayandi; Saw, Jessia J.; Williams, James C. Jr.; Lieske, John C.; Krambeck, Amy E.; Romero, Michael F.; Chia, Nicholas; Schwaderer, Andrew L.; Alcalde, Reinaldo E.; Bruce, Wililam J.; Wildman, Derek E.; Fried, Glenn A.; Werth, Charles J.; Reeder, Richard J.; Yau, Peter M.; Sanford, Robert A.; Fouke, Bruce W.; Anatomy and Cell Biology, IU School of MedicineMore than 10% of the global human population is now afflicted with kidney stones, which are commonly associated with other significant health problems including diabetes, hypertension and obesity. Nearly 70% of these stones are primarily composed of calcium oxalate, a mineral previously assumed to be effectively insoluble within the kidney. This has limited currently available treatment options to painful passage and/or invasive surgical procedures. We analyze kidney stone thin sections with a combination of optical techniques, which include bright field, polarization, confocal and super-resolution nanometer-scale auto-fluorescence microscopy. Here we demonstrate using interdisciplinary geology and biology (geobiology) approaches that calcium oxalate stones undergo multiple events of dissolution as they crystallize and grow within the kidney. These observations open a fundamentally new paradigm for clinical approaches that include in vivo stone dissolution and identify high-frequency layering of organic matter and minerals as a template for biomineralization in natural and engineered settings.Item Human jackstone arms show a protein-rich, X-ray lucent core, suggesting that proteins drive their rapid and linear growth(Springer, 2022) Canela, Victor Hugo; Dzien, Cornelius; Bledsoe, Sharon B.; Borofsky, Michael S.; Boris, Ronald S.; Lingeman, James E.; El-Achkar, Tarek M.; Williams, James C., Jr.; Anatomy, Cell Biology and Physiology, School of MedicineJackstone calculi, having arms that extend out from the body of the stone, were first described over a century ago, but this morphology of stones has been little studied. We examined 98 jackstones from 50 different patient specimens using micro-computed tomography (micro CT) and infrared (IR) spectroscopy. Micro CT showed that jackstone arms consisted of an X-ray lucent core within each arm. This X-ray lucent core frequently showed sporadic, thin layers of apatite arranged transversely to the axis of the arm. The shells of the jackstones were always composed of calcium oxalate (CaOx), and with the monohydrate form the majority or sole mineral. Study of layering in the shell regions by micro CT showed that growth lines extended from the body of the stone out onto jack arms and that the thickness of the shell covering of jack arms often thinned with distance from the stone body, suggesting that the arms grew at a faster radial rate than did the stone body. Histological cross-sections of decalcified jackstone arms showed the core to be more highly autofluorescent than was the CaOx shell, and immunohistochemistry showed the core to be enriched in Tamm-Horsfall protein. We hypothesize that the protein-rich core of a jack arm might preferentially bind more protein from the urine and resist deposition of CaOx, such that the arm grows in a linear manner and at a faster rate than the bulk of the stone. This hypothesis thus predicts an enrichment of certain urine proteins in the core of the jack arm, a theory that is testable by appropriate analysis.Item Incidence and Importance of Calcium Deposition in Kidney Biopsy Specimens(Karger, 2022) Gaddy, Anna; Schwantes-An, Tae-Hwi; Moorthi, Ranjani N.; Phillips, Carrie L.; Eadon, Michael T.; Moe, Sharon M.; Medical and Molecular Genetics, School of MedicineIntroduction: Calcification on native kidney biopsy specimens is often noted by pathologists, but the consequence is unknown. Methods: We searched the pathology reports in the Biopsy Biobank Cohort of Indiana for native biopsy specimens with calcification. Results: Of the 4,364 specimens, 416 (9.8%) had calcification. We compared clinical and histopathology findings in those with calcification (n = 429) compared to those without calcification (n = 3,936). Patients with calcification were older, had more comorbidities, lower estimated glomerular filtration rates (eGFR), were more likely to have hyaline arteriosclerosis, interstitial fibrosis/tubular atrophy, and a primary pathologic diagnosis of acute tubular injury or acute tubular necrosis when compared to patients without calcification. Patients with calcium oxalate deposition alone, compared to calcium phosphate or mixed calcifications, had fewer comorbidities but were more likely to have a history of gastric bypass surgery or malabsorption and take vitamin D. In patients with two or more years of follow-up, multivariate analyses showed the presence of calcification (HR 0.59, 0.38-0.92, p = 0.02) and higher eGFR (HR 0.76, 0.73-0.79, p < 0.001), was associated with decreased likelihood of progressing to end-stage renal disease. The presence of calcification was also associated with a reduced slope/decline in eGFR compared to known biopsy and clinical risk factors for decline in kidney function. We hypothesized this was due to more recoverable acute kidney injury (AKI) and found more severe acute kidney injury network stage in patients with kidney calcification but also greater improvement over time. Discussion/conclusion: In summary, we demonstrated that calcification on kidney biopsy specimens was associated with a better prognosis than those without calcification due to the association with recoverable AKI.Item Label-free proteomic methodology for the analysis of human kidney stone matrix composition.(BMC, 2016) Witzmann, Frank A.; Evan, Andrew P.; Coe, Fredric L.; Worcester, Elaine M.; Lingeman, James E.; Williams, James C.; Department of Cellular & Integrative Physiology, IU School of MedicineBackground: Kidney stone matrix protein composition is an important yet poorly understood aspect of nephrolithiasis. We hypothesized that this proteome is considerably more complex than previous reports have indicated and that comprehensive proteomic profiling of the kidney stone matrix may demonstrate relevant constitutive differences between stones. We have analyzed the matrices of two unique human calcium oxalate stones (CaOx-Ia and CaOx-Id) using a simple but effective chaotropic reducing solution for extraction/solubilization combined with label-free quantitative mass spectrometry to generate a comprehensive profile of their proteomes, including physicochemical and bioinformatic analysis.` Results: We identified and quantified 1,059 unique protein database entries in the two human kidney stone samples, revealing a more complex proteome than previously reported. Protein composition reflects a common range of proteins related to immune response, inflammation, injury, and tissue repair, along with a more diverse set of proteins unique to each stone. Conclusion: The use of a simple chaotropic reducing solution and moderate sonication for extraction and solubilization of kidney stone powders combined with label-free quantitative mass spectrometry has yielded the most comprehensive list to date of the proteins that constitute the human kidney stone proteome. Electronic supplementary material: The online version of this article (doi:10.1186/s12953-016-0093-x) contains supplementary material, which is available to authorized users.Item Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque(Springer, 2021) Winfree, Seth; Weiler, Courtney; Bledsoe, Sharon B.; Gardner, Tony; Sommer, André J.; Evan, Andrew P.; Lingeman, James E.; Krambeck, Amy E.; Worcester, Elaine M.; El-Achkar, Tarek M.; Williams, James C., Jr.; Medicine, School of MedicineKidney stones frequently develop as an overgrowth on Randall's plaque (RP) which is formed in the papillary interstitium. The organic composition of RP is distinct from stone matrix in that RP contains fibrillar collagen; RP in tissue has also been shown to have two proteins that are also found in stones, but otherwise the molecular constituents of RP are unstudied. We hypothesized that RP contains unique organic molecules that can be differentiated from the stone overgrowth by fluorescence. To test this, we used micro-CT-guided polishing to expose the interior of kidney stones for multimodal imaging with multiphoton, confocal and infrared microscopy. We detected a blue autofluorescence signature unique to RP, the specificity of which was also confirmed in papillary tissue from patients with stone disease. High-resolution mineral mapping of the stone also showed a transition from the apatite within RP to the calcium oxalate in the overgrowth, demonstrating the molecular and spatial transition from the tissue to the urine. This work provides a systematic and practical approach to uncover specific fluorescence signatures which correlate with mineral type, verifies previous observations regarding mineral overgrowth onto RP and identifies a novel autofluorescence signature of RP demonstrating RP's unique molecular composition.Item Randall's plaque in stone formers originates in ascending thin limbs(American Physiological Society, 2018-11) Evan, Andrew P.; Coe, Fredric L.; Lingeman, James; Bledsoe, Sharon; Worcester, Elaine M.; Anatomy and Cell Biology, School of MedicineRandall's plaque, an attachment site over which calcium oxalate stones form, begins in the basement membranes of thin limbs of the loop of Henle. The mechanism of its formation is unknown. Possibly, enhanced delivery of calcium out of the proximal tubule, found in many stone formers, increases reabsorption of calcium from the thick ascending limb into the interstitium around descending vasa recta, which convey that calcium into the deep medulla, and raises supersaturations near thin limbs ("vas washdown"). According to this hypothesis, plaque should form preferentially on ascending thin limbs, which do not reabsorb water. We stained serial sections of papillary biopsies from stone-forming patients for aquaporin 1 (which is found in the descending thin limb) and the kidney-specific chloride channel ClC-Ka (which is found in the ascending thin limb). Plaque (which is detected using Yasue stain) colocalized with ClC-Ka, but not with aquaporin 1 (χ2 = 464, P < 0.001). We conclude that plaque forms preferentially in the basement membranes of ascending thin limbs, fulfilling a critical prediction of the vas washdown theory of plaque pathogenesis. The clinical implication is that treatments such as a low-sodium diet or thiazide diuretics that raise proximal tubule calcium reabsorption may reduce formation of plaque as well as calcium kidney stones.Item Stone Morphology Distinguishes Two Pathways of Idiopathic Calcium Oxalate Stone Pathogenesis(Mary Ann Liebert, 2022) Williams, James C., Jr.; Al-Awadi, Haider; Muthenini, Manognya; Bledsoe, Sharon B.; El-Achkar, Tarek; Evan, Andrew P.; Coe, Fredric; Lingeman, James E.; Worcester, Elaine M.; Anatomy, Cell Biology and Physiology, School of MedicineIntroduction: About 1 in 11 Americans will experience a kidney stone, but underlying causes remain obscure. The objective of the present study was to separate idiopathic calcium oxalate stone formers by whether or not they showed positive evidence of forming a stone on Randall's plaque (RP). Materials and Methods: In patients undergoing either percutaneous or ureteroscopic procedures for kidney stone removal, all stone material was extracted and analyzed using micro-CT imaging to identify those attached to RP. Twenty-four-hour urine samples were collected weeks after the stone removal procedure and patients were off of medications that would affect urine composition. The endoscopic video was analyzed for papillary pathology (RP, pitting, plugging, dilated ducts, and loss of papillary shape) by an observer blinded to the data on stone type. The percent papillary area occupied by RP and ductal plugging was quantified using image analysis software. Results: Patients having even one stone on RP (N = 36) did not differ from non-RP patients (N = 37) in age, sex, BMI, or other clinical characteristics. Compared with the non-RP group, RP stone formers had more numerous, but smaller, stones, more abundant papillary RP formation, and fewer ductal plugs, both by quantitative measurement of surface area (on average, three times more plaque area, but only 41% as much plug area as in non-RP patients) and by semiquantitative visual grading. Serum and blood values did not differ between RP and non-RP stone formers by any measure. Conclusions: Growth of many small stones on plaque seems the pathogenetic scheme for the RP stone-forming phenotype, whereas the non-RP phenotype stone pathogenesis pathway is less obvious. Higher papillary plugging in non-RP patients suggests that plugs play a role in stone formation and that these patients have a greater degree of papillary damage. Underlying mechanisms that create these distinctive phenotypes are presently unknown.Item Using micro computed tomographic imaging for analyzing kidney stones(French Académie des Sciences, 2021) Williams, James C., Jr.; Lingeman, James E.; Daudon, Michel; Bazin, Dominique; Anatomy, Cell Biology and Physiology, School of MedicineStone analysis is a critical part of the clinical characterization of urolithiasis. This article reviews the strengths and limitations of micro CT in the analysis of stones. Using micro CT alone in a series of 757 stone specimens, micro CT identified the 458 majority calcium oxalate specimens with a sensitivity of 99.6% and specificity of 95.3%. Micro CT alone was also successful in identifying majority apatite, brushite, uric acid, and struvite stones. For some minor minerals—such as apatite in calcium oxalate or calcium salts in uric acid stones—micro CT enables the detection of minute quantities well below 1%. The addition of a standard for calibrating X-ray attenuation values improves the ability of micro CT to identify common stone minerals. The three-dimensional nature of micro CT also allows for the visualization of surface features in stones, which is valuable for the study of stone formation.