- Browse by Subject
Browsing by Subject "Calcium influx"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Long-Term Diabetic Microenvironment Augments the Decay Rate of Capsaicin-Induced Currents in Mouse Dorsal Root Ganglion Neurons(MDPI, 2019-02-21) Chen, Xingjuan; Duan, Yaqian; Riley, Ashley M.; Welch, Megan A.; White, Fletcher A.; Grant, Maria B.; Obukhov, Alexander G.; Cellular and Integrative Physiology, School of MedicineIndividuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.Item Spinophilin limits GluN2B-containing NMDAR activity and sequelae associated with excessive hippocampal NMDAR function(Cold Spring Harbor Laboratory, 2021-01-01) Salek, Asma B.; Bansal, Ruchi; Berbari, Nicolas F.; Baucum, Anthony J., II.; Biology, School of ScienceN-methyl-D-Aspartate receptors (NMDARs) are calcium-permeable ion channels that are ubiquitously expressed within the glutamatergic postsynaptic density. Phosphorylation of NMDAR subunits defines receptor activity and surface localization. Modulation of NMDAR phosphorylation by kinases and phosphatases regulates calcium entering the cell and subsequent activation of calcium-dependent processes. Spinophilin is the major synaptic protein phosphatase 1 (PP1) targeting protein that controls phosphorylation of myriad substrates via targeting or inhibition of PP1. Spinophilin limits NMDAR function in a PP1-dependent manner and we have previously shown that spinophilin sequesters PP1 away from the GluN2B subunit of the NMDAR, which results in increased phosphorylation of Ser-1284. However, how spinophilin modifies NMDAR function is unclear. Herein, we detail that while Ser-1284 phosphorylation increases calcium influx via GluN2B-containing NMDARs, overexpression of spinophilin decreases GluN2B-containing NMDAR activity by decreasing its surface expression. In hippocampal neurons isolated from spinophilin knockout animals there is an increase in cleaved caspase-3 levels compared to wildtype mice; however, this effect is not exclusively due to NMDAR activation; suggesting multiple putative mechanisms by which spinophilin may modulate caspase cleavage. Behaviorally, our data suggest that spinophilin knockout mice have deficits in spatial cognitive flexibility, a behavior associated GluN2B function within the hippocampus. Taken together, our data demonstrate a unique mechanism by which spinophilin modulates GluN2B containing NMDAR phosphorylation, channel function, and trafficking and that loss of spinophilin promotes pathological sequelae associated with GluN2B dysfunction.