- Browse by Subject
Browsing by Subject "Calcitonin Gene-Related Peptide"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture(Society for Neuroscience, 1994-08) Vasko, MR; Campbell, WB; Waite, KJ; Pharmacology and Toxicology, School of MedicineProstaglandins are known to enhance the inflammatory and nociceptive actions of other chemical mediators of inflammation such as bradykinin. One possible mechanism for this sensitizing action is that prostanoids augment the release of neuroactive substances from sensory neurons. To initially test this hypothesis, we examined whether selected prostaglandins could enhance the resting or bradykinin-evoked release of immunoreactive substance P (iSP) and/or immunoreactive calcitonin gene-related peptide (iCGRP) from sensory neurons in culture. Bradykinin alone causes a concentration-dependent increase in the release of iSP and iCGRP from isolated sensory neurons, and this action is abolished in the absence of extracellular calcium. Pretreating the neurons with PGE2 (10 nM to 1 microM) potentiates the bradykinin-evoked release of both iSP and iCGRP by approximately two-to fourfold. At these concentrations, PGE2 alone did not significantly alter peptide release. Exposing the cultures to 1 microM PGF2 alpha is ineffective in altering either resting or bradykinin-evoked peptide release. Sensory neurons in culture contain cyclooxygenase-like immunoreactivity suggesting that the enzyme that converts arachidonic acid to prostaglandins is present. In addition, pretreating cultures with 14C-arachidonic acid yields radiolabeled eicosanoids that cochromatograph with known prostaglandin standards. Preexposing cultures to indomethacin abolishes the production of prostaglandins and attenuates the bradykinin-stimulated release of iSP and iCGRP. This implies that the synthesis of prostaglandins contributes to the bradykinin-evoked release of peptides. The augmentation of bradykinin-induced release of iSP and iCGRP by PGE2 may be one mechanism to account for the inflammatory and hyperalgesic actions of this eicosanoid.Item Prostaglandins facilitate peptide release from rat sensory neurons by activating the adenosine 3',5'-cyclic monophosphate transduction cascade(Society for Neuroscience, 1995-07) Hingtgen, C.M.; Waite, K.J.; Vasko, M.R.; Pharmacology and Toxicology, School of MedicineProstaglandins sensitize sensory neurons to activation by mechanical, thermal and chemical stimuli. This sensitization also results in an increase in the stimulus-evoked release of the neuroactive peptides, substance P and calcitonin gene-related peptide from sensory neurons. The cellular transduction cascade underlying the prostaglandin-induced augmentation of peptide release is not known. Therefore, we examined whether the sensitizing action of prostaglandins on peptide release from sensory neurons grown in culture is mediated by the second messenger, adenosine 3', 5' cyclic monophosphate (cAMP). Prostaglandin E2 and carba prostacyclin (a stable analog of prostaglandin I2) significantly increase the content of cAMP-like immunoreactive substance (icAMP) in the sensory neuron cultures at concentrations that also augment the bradykinin- or capsaicin-evoked release of peptides. Furthermore, pretreating sensory neurons with agents that increase intracellular cAMP mimics the sensitizing action of prostaglandins. Exposing cultures to either forskolin (0.1-10 microM), cholera toxin (1.5 micrograms), or 8-bromo-cAMP (100 microM) results in a significant enhancement of the bradykinin- or capsaicin-stimulated release of both substance P-like and calcitonin gene-related peptide-like immunoreactive substances. Pretreating sensory neurons with the adenylyl cyclase inhibitor, 9-tetrahydro-2-furyl adenine (5 mM), abolishes the prostaglandin-induced increases in icAMP content and attenuates the prostaglandin E2 or carba prostacyclin enhancement of the evoked release of calcitonin gene-related peptide-like immunoreactive substance. These results demonstrate that the cAMP transduction cascade mediates the sensitizing actions of prostaglandins on peptide release from sensory neurons.