- Browse by Subject
Browsing by Subject "Calcimimetics"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Calcimimetics Alter Periosteal and Perilacunar Bone Matrix Composition and Material Properties in Early Chronic Kidney Disease(Wiley, 2022) Damrath, John G.; Moe, Sharon M.; Wallace, Joseph M.; Medicine, School of MedicineChronic kidney disease (CKD) affects 15% of Americans and greatly increases fracture risk due to elevated parathyroid hormone, cortical porosity, and reduced bone material quality. Calcimimetic drugs are used to lower parathyroid hormone (PTH) in CKD patients, but their impact on bone matrix properties remains unknown. We hypothesized that tissue-level bone quality is altered in early CKD and that calcimimetic treatment will prevent these alterations. To test this hypothesis, we treated Cy/+ rats, a model of spontaneous and progressive CKD-mineral and bone disorder (CKD-MBD), with KP-2326, a preclinical analogue of etelcalcetide, early in the CKD disease course. To measure tissue-level bone matrix composition and material properties, we performed colocalized Raman spectroscopy and nanoindentation on new periosteal bone and perilacunar bone using hydrated femur sections. We found that CKD and KP treatment lowered mineral type B carbonate substitution whereas KP treatment increased mineral crystallinity in new periosteal bone. Reduced elastic modulus was lower in CKD but was not different in KP-treated rats versus CTRL. In perilacunar bone, KP treatment lowered type B carbonate substitution, increased crystallinity, and increased mineral-to-matrix ratio in a spatially dependent manner. KP treatment also increased reduced elastic modulus and hardness in a spatially dependent manner. Taken together, these data suggest that KP treatment improves material properties on the tissue level through a combination of lowering carbonate substitution, increasing mineral crystallinity, and increasing relative mineralization of the bone early in CKD. As a result, the mechanical properties were improved, and in some regions, were the same as control animals. Therefore, calcimimetics may help prevent CKD-induced bone deterioration by improving bone quality in new periosteal bone and in bone tissue near osteocyte lacunae.Item Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis(Oxford University Press, 2019-04-26) Wolf, Myles; Block, Geoffrey A.; Chertow, Glenn M.; Cooper, Kerry; Fouqueray, Bruno; Moe, Sharon M.; Sun, Yan; Tomlin, Holly; Vervloet, Marc; Oberbauer, Rainer; Medicine, School of MedicineBackground: Etelcalcetide is an intravenous calcimimetic approved for treatment of secondary hyperparathyroidism (sHPT) in patients receiving hemodialysis. Besides lowering parathyroid hormone (PTH), etelcalcetide also significantly reduces fibroblast growth factor 23 (FGF23), but the mechanisms are unknown. Methods: To investigate potential mediators of etelcalcetide-induced FGF23 reduction, we performed secondary analyses of the 26-week randomized trials that compared the effects on PTH of etelcalcetide (n = 509) versus placebo (n = 514) and etelcalcetide (n = 340) versus cinacalcet (n = 343) in adults with sHPT receiving hemodialysis. We analyzed changes in FGF23 in relation to changes in PTH, calcium, phosphate and bone turnover markers. We also investigated how concomitant treatments aimed at mitigating hypocalcemia altered the FGF23-lowering effects of etelcalcetide. Results: Etelcalcetide reduced FGF23 [median % change (quartile 1-quartile 3)] from baseline to the end of the trial significantly more than placebo [-56% (-85 to -7) versus +2% (-40 to +65); P < 0.001] and cinacalcet [-68% (-87 to -26) versus -41% (-76 to +25); P < 0.001]. Reductions in FGF23 correlated strongly with reductions in calcium and phosphate, but not with PTH; correlations with bone turnover markers were inconsistent and of borderline significance. Increases in concomitant vitamin D administration partially attenuated the FGF23-lowering effect of etelcalcetide, but increased dialysate calcium concentration versus no increase and increased dose of calcium supplementation versus no increase did not attenuate the FGF23-lowering effects of etelcalcetide. Conclusion: These data suggest that etelcalcetide potently lowers FGF23 in patients with sHPT receiving hemodialysis and that the effect remains detectable among patients who receive concomitant treatments aimed at mitigating treatment-associated decreases in serum calcium.Item Non-Additive Effects of Combined NOX1/4 Inhibition and Calcimimetic Treatment on a Rat Model of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD)(Wiley, 2022-02-11) Damrath, John G.; Chen, Neal X.; Metzger, Corinne E.; Srinivasan, Shruthi; O’Neill, Kalisha; Biruete, Annabel; Avin, Keith G.; Wallace, Joseph M.; Allen, Matthew R.; Moe, Sharon M.; Medicine, School of MedicineChronic kidney disease‐mineral and bone disorder (CKD‐MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end‐stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD‐MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT‐137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP‐2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C‐terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8‐OHdG in the serum or aorta. KP treatment reduced aortic 8‐OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive.Item Successful treatment of neonatal severe hyperparathyroidism with cinacalcet in two patients(BioScientifica, 2015) Fisher, Marisa M.; Cabrera, Susanne M.; Imel, Erik A.; Department of Medicine, IU School of MedicineNeonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11-12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders. LEARNING POINTS: NSHPT due to mutations in the CASR gene occurs with hypercalcemia and metabolic bone disease, but not always with severe critical illness in infancy.NSHPT should be considered in the differential diagnosis for a newborn with a bell-shaped chest, osteopenia, and periosteal reactions.Neurodevelopmental consequences may occur in children with hypercalcemia and may improve during treatment.Calcimimetics can be used to successfully treat the pathophysiology of NSHPT directly to control serum calcium levels.