ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "CaMKK2"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CaMKK2 Knockout Bone Marrow Cells Collected/Processed in Low Oxygen (Physioxia) Suggests CaMKK2 as a Hematopoietic Stem to Progenitor Differentiation Fate Determinant
    (Springer, 2022) Broxmeyer, Hal E.; Ropa, James; Capitano, Maegan L.; Cooper, Scott; Racioppi, Luigi; Sankar, Uma; Microbiology and Immunology, School of Medicine
    Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2−/− and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs. ambient air (~21% oxygen). Subjecting cells collected to ambient air, even for a few minutes, causes a stress that we termed Extra Physiological Shock/Stress (EPHOSS) that causes differentiation of HSCs and HPCs. We consider physioxia collection/processing a more relevant way to assess HSC/HPC numbers and function, as the cells remain in an oxygen tension closer physiologic conditions. Camkk2−/− cells collected/processed at 3% oxygen had positive and negative effects respectively on HSCs (by engraftment using competitive transplantation with congenic donor and competitor cells and lethally irradiated congenic recipient mice), and HPCs (by colony forming assays of CFU-GM, BFU-E, and CFU-GEMM) compared to WT cells processed in ambient air. Thus, with cells collected/processed under physioxia, and therefore never exposed and naïve to ambient air conditions, CaMKK2 not only appears to act as an HSC to HPC differentiation fate determinant, but as we found for other intracellular mediators, the Camkk−/− mouse BM cells were relatively resistant to effects of EPHOSS. This information is of potential use for modulation of WT BM HSCs and HPCs for future clinical advantage.
  • Loading...
    Thumbnail Image
    Item
    CaMKK2 Signaling in Metabolism and Skeletal Disease: a New Axis with Therapeutic Potential
    (Springer Nature, 2019-08) Williams, Justin N.; Sankar, Uma; Anatomy and Cell Biology, School of Medicine
    PURPOSE OF REVIEW: Age and metabolic disorders result in the accumulation of advanced glycation endproducts (AGEs), oxidative stress, and inflammation, which cumulatively cause a decline in skeletal health. Bone becomes increasingly vulnerable to fractures and its regenerative capacity diminishes under such conditions. With a rapidly aging population in the USA and the global increase in diabetes, efficacious, multi-dimensional therapies that can treat or prevent skeletal diseases associated with metabolic dysfunction and inflammatory disorders are acutely needed. RECENT FINDINGS: Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of nutrient intake, glucose metabolism, insulin production, and adipogenesis. Recent studies suggest a pivotal role for CaMKK2 in bone metabolism, fracture healing, and inflammation. Aside from rekindling previous concepts of CaMKK2 as a potent regulator of whole-body energy homeostasis, this review emphasizes CaMKK2 as a potential therapeutic target to treat skeletal diseases that underlie metabolic conditions and inflammation.
  • Loading...
    Thumbnail Image
    Item
    CaMKK2 Signaling in Metabolism and Skeletal Disease: A New Axis with Therapeutic Potential
    (2022-07) Williams, Justin N.; Sankar, Uma; Evans-Molina, Carmella; Bonewald, Lynda; Burr, David; Allen, Matthew
    Type 2 diabetes mellitus (T2DM) is a growing problem globally and is associated with increased fracture risk and delayed bone healing. Novel approaches are needed in the treatment of T2DM and the resulting diabetic osteopathy. Recent studies highlight the role of bone as an endocrine organ producing factors that communicate with distant tissues to modulate systemic glucose metabolism. Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) is a potent regulator of whole-body energy metabolism, inflammation, bone remodeling and fracture healing. Genetic ablation of CaMKK2 protects from diet-induced obesity, insulin resistance and inflammation, while enhancing pancreatic β cell survival and insulin secretion. Deletion or inhibition of CaMKK2 promotes bone accrual by stimulating osteoblast-mediated bone formation and suppressing osteoclast-mediated bone resorption; however, its specific role in osteocytes, the master regulator of bone remodeling remains unknown. Here we demonstrate that conditional deletion of CaMKK2 from osteocytes enhances bone mass in 3-month-old female, but not male mice, due to suppression of osteoclasts. Conditioned media experiments and proteomics analysis revealed that female osteocytes lacking CaMKK2 suppressed osteoclast formation and function through enhanced secretion of calpastatin, a potent inhibitor of calpains, which are calciumdependent cysteine proteases that support osteoclasts. Further, to determine if CaMKK2- deficient osteocytes regulate whole-body glucose homeostasis, we placed these mice on a high-fat diet (HFD) for a period of 16 weeks. Although the diet did not significantly impact bone mass or strength, we found that conditional deletion of CaMKK2 in osteocytes enhanced bone microarchitecture in 6-month-old male and female mice. We also observed that conditional deletion of CaMKK2 from osteocytes protected male and female mice from HFD-induced obesity and insulin insensitivity. Taken together, these findings highlight CaMKK2 as a potent regulator of osteocyte-mediated modulation of bone remodeling and whole-body energy metabolism.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University