- Browse by Subject
Browsing by Subject "CYP3A5"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing(Wiley, 2015-07) Birdwell, Kelly A.; Decker, Brian; Barbarino, Julia M.; Peterson, Josh F.; Stein, C. Michael; Sadee, Wolfgang; Wang, Danxin; Vinks, Alexander A.; He, Yijing; Swen, Jesse J.; Leeder, J. Steven; van Schaik, RHN; Thummel, Kenneth E.; Klein, Teri E.; Caudle, Kelly E.; MacPhee, Iain A.M.; Department of Medicine, IU School of MedicineTacrolimus is the mainstay immunosuppressant drug used after solid organ and hematopoietic stem cell transplantation. Individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacrolimus as compared with those who are CYP3A5 nonexpressers (poor metabolizers), possibly delaying achievement of target blood concentrations. We summarize evidence from the published literature supporting this association and provide dosing recommendations for tacrolimus based on CYP3A5 genotype when known (updates at www.pharmgkb.org).Item Implementation of Clinical Cytochrome P450 3A Genotyping for Tacrolimus Dosing in a Large Kidney Transplant Program(Wiley, 2023) Tillman, Emma; Nikirk, Miley G.; Chen, Jeanne; Skaar, Todd C.; Shugg, Tyler; Maddatu, Judith P.; Sharfuddin, Asif A.; Eadon, Michael T.; Medicine, School of MedicineTacrolimus is a calcineurin inhibitor with a narrow therapeutic range and is metabolized by cytochrome P450 (CYP) isoenzymes CYP3A4 and CYP3A5. The Clinical Pharmacogenetic Implementation Consortium published evidence-based guidelines for CYP3A5 normal/intermediate metabolizers prescribed tacrolimus, yet few transplant centers have implemented routine testing. The objective of this study was to implement preemptive CYP3A genotyping into clinical practice in a large kidney transplant program and to evaluate workflow feasibility, potential clinical benefit, and reimbursement to identify barriers and determine sustainability. Preemptive pharmacogenetic testing for CYP3A5 and CYP3A4 was implemented in all patients listed for a kidney transplant as part of standard clinical care. Genotyping was performed at the listing appointment, results were reported as discrete data in the electronic medical record, and education and clinical decision support alerts were developed to provide pharmacogenetic-recommended tacrolimus dosing. During this initial phase, all patients were administered standard tacrolimus dosing, and clinical and reimbursement outcomes were collected. Greater than 99.5% of genotyping claims were reimbursed by third-party payers. CYP3A5 normal/intermediate metabolizers had significantly fewer tacrolimus trough concentrations within the target range and a significantly longer time to their first therapeutic trough compared to poor metabolizers. The challenge of tacrolimus dosing is magnified in the African American population. The US Food and Drug Administration drug label recommends increased starting doses in African ancestry, yet only ≈66% of African Americans in our cohort were normal/intermediate metabolizers who required higher doses. Routine CYP3A5 genotyping may overcome this issue by using genotype over race as a more accurate predictor of drug response.Item Quantitative Prediction of CYP3A4‐ and CYP3A5‐Mediated Drug Interactions(Wiley, 2019) Guo, Yingying; Lucksiri, Aroonrut; Dickinson, Gemma L.; Vuppalanchi, Raj K.; Hilligoss, Janna K.; Hall, Stephen D.; Medicine, School of MedicineWe verified a physiologically‐based pharmacokinetic (PBPK) model to predict cytochrome P450 3A4/5‐mediated drug‐drug interactions (DDIs). A midazolam (MDZ)–ketoconazole (KTZ) interaction study in 24 subjects selected by CYP3A5 genotype, and liquid chromatography and mass spectroscopy quantification of CYP3A4/5 abundance from independently acquired and genotyped human liver (n = 136) and small intestinal (N = 12) samples, were conducted. The observed CYP3A5 genetic effect on MDZ systemic and oral clearance was successfully replicated by a mechanistic framework incorporating the proteomics‐informed CYP3A abundance and optimized small intestinal CYP3A4 abundance based on MDZ intestinal availability (FG) of 0.44. Furthermore, combined with a modified KTZ PBPK model, this framework recapitulated the observed geometric mean ratio of MDZ area under the curve (AUCR) following 200 or 400 mg KTZ, which was, respectively, 2.7–3.4 and 3.9–4.7‐fold in intravenous administration and 11.4–13.4 and 17.0–19.7‐fold in oral administration, with AUCR numerically lower (P > 0.05) in CYP3A5 expressers than nonexpressers. In conclusion, the developed mechanistic framework supports dynamic prediction of CYP3A‐mediated DDIs in study planning by bridging DDIs between CYP3A5 expressers and nonexpressers.Item Vincristine Metabolism and the Role of CYP3A5(2007-11-16T20:07:34Z) Dennison, Jennifer Bolin; Hall, Stephen D. (Stephen David), 1957-; Kamendulis, Lisa M.; Queener, Sherry F.; Erickson, Leonard C.; Wrighton, Steven A.Vincristine is metabolized by the cytochrome P450 3A subfamily of enzymes possibly including CYP3A5, a genetically polymorphic enzyme. The contribution of CYP3A5 to the metabolism of vincristine was quantified by various in vitro models: cDNA-expressed enzymes, human liver microsomes, and human hepatocytes. With these models, the major CYP metabolite of vincristine, M1, was identified and extensively characterized. The rates of M1 formation in the cDNA-expressed enzyme models were at least 7-fold higher with CYP3A5 than CYP3A4; approximately 90% of the hepatic metabolism was predicted to be CYP3A5-mediated. For human liver microsomes with high CYP3A5 expression, the CYP3A5 contribution was substantial, approximately 80%. Human hepatocytes with at least one CYP3A5*1 allele also metabolized vincristine, albeit at a slower rate (10-fold) than human liver microsomes. The CYP3A5 low-expressing hepatocytes did not metabolize vincristine. We conclude that for high CYP3A5 expressers, the majority of the CYP metabolism is mediated by CYP3A5. By in vitro/in vivo scaling with microsomes, the hepatic clearances of high CYP3A5 expressers are predicted to have a 5-fold higher hepatic clearance than low expressers. However, the role of metabolism in the systemic clearance of vincristine is unknown. To study the disposition of vincristine in vivo, a sensitive and selective LC/MS/MS assay was validated for the quantification of vincristine and M1 quantification in human plasma. Vincristine and M1 were identified and quantified in select pediatric plasma and urine samples. For future large-scale clinical studies, the vincristine and M1 concentrations in plasma will be quantified to understand the role of CYP3A5 genotype in vincristine pharmacokinetics. For patients that are CYP3A5 high expressers, the systemic clearance of vincristine may be higher than that of low CYP3A5 expressers. Thus, CYP3A5 genotype may be an important determinant of inter-individual variability in clinical outcomes.