- Browse by Subject
Browsing by Subject "CTCF"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item BORIS expression in ovarian cancer precursor cells alters the CTCF cistrome and enhances invasiveness through GALNT14(American Association for Cancer Research, 2019-10) Hillman, Joanna C.; Pugacheva, Elena M.; Barger, Carter J.; Sribenja, Sirinapa; Rosario, Spencer; Albahrani, Mustafa; Truskinovsky, Alexander M.; Stablewski, Aimee; Liu, Song; Loukinov, Dmitri I.; Zentner, Gabriel E.; Lobanenkov, Victor V.; Karpf, Adam R.; Higgins, Michael J.; Medicine, School of MedicineHigh-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecological cancer death. We have previously shown that CTCFL (also known as BORIS, Brother of the Regulator of Imprinted Sites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed BORIS in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC. BORIS-expressing cells exhibited increased motility and invasion, and BORIS expression was associated with alterations in several cancer-associated gene expression networks, including fatty acid metabolism, TNF signaling, cell migration, and ECM-receptor interactions. Importantly, GALNT14, a glycosyltransferase gene implicated in cancer cell migration and invasion, was highly induced by BORIS, and GALNT14 knockdown significantly abrogated BORIS-induced cell motility and invasion. In addition, in silico analyses provided evidence for BORIS and GALNT14 co-expression in several cancers. Finally, ChIP-seq demonstrated that expression of BORIS was associated with de novo and enhanced binding of CTCF at hundreds of loci, many of which correlated with activation of transcription at target genes, including GALNT14. Taken together, our data indicate that BORIS may promote cell motility and invasion in HGSC via upregulation of GALNT14, and suggests BORIS as a potential therapeutic target in this malignancy.Item CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention(National Academy of Sciences, 2020-01-28) Pugacheva, Elena M.; Kubo, Naoki; Loukinov, Dmitri; Tajmul, Md; Kang, Sungyun; Kovalchuk, Alexander L.; Strunnikov, Alexander V.; Zentner, Gabriel E.; Ren, Bing; Lobanenkov, Victor V.; Medicine, School of MedicineThe DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.Item Distinct Roles of Brd2 and Brd4 in Potentiating the Transcriptional Program for Th17 Cell Differentiation(Cell Press, 2017-03-16) Cheung, Ka Lung; Zhang, Fan; Jaganathan, Anbalagan; Sharma, Rajal; Zhang, Qiang; Konuma, Tsuyoshi; Shen, Tong; Lee, June-Yong; Ren, Chunyan; Chen, Chih-Hung; Lu, Geming; Olson, Matthew R.; Zhang, Weijia; Kaplan, Mark H.; Littman, Dan R.; Walsh, Martin J.; Xiong, Huabao; Zeng, Lei; Zhou, Ming-Ming; Pediatrics, School of MedicineThe BET proteins are major transcriptional regulators and have emerged as new drug targets, but their functional distinction has remained elusive. In this study, we report that the BET family members Brd2 and Brd4 exert distinct genomic functions at genes whose transcription they co-regulate during mouse T-helper 17 (Th17) cell differentiation. Brd2 is associated with the chromatin insulator CTCF and the cohesin complex to support cis-regulatory enhancer assembly for gene transcriptional activation. In this context, Brd2 binds the transcription factor Stat3 in an acetylation-sensitive manner and facilitates Stat3 recruitment to active enhancers occupied with transcription factors Irf4 and Batf. In parallel, Brd4 temporally controls RNA polymerase II (Pol II) processivity during transcription elongation through cyclinT1/Cdk9 recruitment and Pol II Ser2 phosphorylation. Collectively, our study uncovers both separate and interdependent Brd2 and Brd4 functions in potentiating the genetic program required for Th17 cell development and adaptive immunity., , Cheung et al. uncover both separate and interdependent Brd2 and Brd4 genomic functions in potentiating the genetic program required for Th17 cell development and adaptive immunity. Brd2 interacts with transcription factor Stat3 and chromatin insulator CTCF/cohesin complex to support enhancer assembly, whereas Brd4 temporally controls RNA PolII for transcription elongation.Item MAGEA1 inhibits the expression of BORIS via increased promoter methylation(Company of Biologiists, 2019-01) Zhao, Jizhong; Wang, Yueqing; Liang, Qianjin; Xu, Yan; Sang, Jianli; Obstetrics and Gynecology, School of MedicineMelanoma-associated antigen A1 (MAGEA1) and BORIS (also known as CTCFL) are members of the cancer testis antigen (CTA) family. Their functions and expression-regulation mechanisms are not fully understood. In this study, we reveal new functions and regulatory mechanisms of MAGEA1 and BORIS in breast cancer cells, which we investigated in parental and genetically manipulated breast cancer cells via gene overexpression or siRNA-mediated downregulation. We identified the interaction between MAGEA1 and CTCF, which is required for the binding of MAGEA1 to the BORIS promoter and is critical for the recruitment of DNMT3a. A protein complex containing MAGEA1, CTCF and DNMT3a was formed before or after conjunction with the BORIS promoter. The binding of this complex to the BORIS promoter accounts for the hypermethylation and repression of BORIS expression, which results in cell death in the breast cancer cell lines tested. Multiple approaches were employed, including co-immunoprecipitation, glutathione S-transferase pull-down assay, co-localization and cell death analyses using annexin V-FITC/propidium iodide double-staining and caspase 3 activation assays, chromatin immunoprecipitation and bisulfite sequencing PCR assays for methylation. Our results have implications for the development of strategies in CTA-based immune therapeutics.