- Browse by Subject
Browsing by Subject "CIFAR-10"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Classification of road side material using convolutional neural network and a proposed implementation of the network through Zedboard Zynq 7000 FPGA(2017-12) Rahman, Tanvir; Christopher, LaurenIn recent years, Convolutional Neural Networks (CNNs) have become the state-of- the-art method for object detection and classi cation in the eld of machine learning and arti cial intelligence. In contrast to a fully connected network, each neuron of a convolutional layer of a CNN is connected to fewer selected neurons from the previous layers and kernels of a CNN share same weights and biases across the same input layer dimension. These features allow CNN architectures to have fewer parameters which in turn reduces calculation complexity and allows the network to be implemented in low power hardware. The accuracy of a CNN depends mostly on the number of images used to train the network, which requires a hundred thousand to a million images. Therefore, a reduced training alternative called transfer learning is used, which takes advantage of features from a pre-trained network and applies these features to the new problem of interest. This research has successfully developed a new CNN based on the pre-trained CIFAR-10 network and has used transfer learning on a new problem to classify road edges. Two network sizes were tested: 32 and 16 Neuron inputs with 239 labeled Google street view images on a single CPU. The result of the training gives 52.8% and 35.2% accuracy respectively for 250 test images. In the second part of the research, High Level Synthesis (HLS) hardware model of the network with 16 Neuron inputs is created for the Zynq 7000 FPGA. The resulting circuit has 34% average FPGA utilization and 2.47 Watt power consumption. Recommendations to improve the classi cation accuracy with deeper network and ways to t the improved network on the FPGA are also mentioned at the end of the work.Item Efficientnext: Efficientnet For Embedded Systems(2022-05) Deokar, Abhishek; El-Sharkawy, Mohamed; King, Brian; Rizkalla, MaherConvolutional Neural Networks have come a long way since AlexNet. Each year the limits of the state of the art are being pushed to new levels. EfficientNet pushed the performance metrics to a new high and EfficientNetV2 even more so. Even so, architectures for mobile applications can benefit from improved accuracy and reduced model footprint. The classic Inverted Residual block has been the foundation upon which most mobile networks seek to improve. EfficientNet architecture is built using the same Inverted Residual block. In this thesis we experiment with Harmonious Bottlenecks in place of the Inverted Residuals to observe a reduction in the number of parameters and improvement in accuracy. The designed network is then deployed on the NXP i.MX 8M Mini board for Image classification.Item Increasing CNN representational power using absolute cosine value regularization(2020-05) Singleton, William S.; El-Sharkawy, Mohamed A.; King, Brian S.; Kim, Dongsoo S.The Convolutional Neural Network (CNN) is a mathematical model designed to distill input information into a more useful representation. This distillation process removes information over time through a series of dimensionality reductions, which ultimately, grant the model the ability to resist noise, and generalize effectively. However, CNNs often contain elements that are ineffective at contributing towards useful representations. This Thesis aims at providing a remedy for this problem by introducing Absolute Cosine Value Regularization (ACVR). This is a regularization technique hypothesized to increase the representational power of CNNs by using a Gradient Descent Orthogonalization algorithm to force the vectors that constitute their filters at any given convolutional layer to occupy unique positions in in their respective spaces. This method should in theory, lead to a more effective balance between information loss and representational power, ultimately, increasing network performance. The following Thesis proposes and examines the mathematics and intuition behind ACVR, and goes on to propose Dynamic-ACVR (D-ACVR). This Thesis also proposes and examines the effects of ACVR on the filters of a low-dimensional CNN, as well as the effects of ACVR and D-ACVR on traditional Convolutional filters in VGG-19. Finally, this Thesis proposes and examines regularization of the Pointwise filters in MobileNetv1.Item Pruning Convolution Neural Network (SqueezeNet) for Efficient Hardware Deployment(2018-12) Gaikwad, Akash S.; El-Sharkawy, Mohamed; Rizkalla, Maher; King, BrianIn recent years, deep learning models have become popular in the real-time embedded application, but there are many complexities for hardware deployment because of limited resources such as memory, computational power, and energy. Recent research in the field of deep learning focuses on reducing the model size of the Convolution Neural Network (CNN) by various compression techniques like Architectural compression, Pruning, Quantization, and Encoding (e.g., Huffman encoding). Network pruning is one of the promising technique to solve these problems. This thesis proposes methods to prune the convolution neural network (SqueezeNet) without introducing network sparsity in the pruned model. This thesis proposes three methods to prune the CNN to decrease the model size of CNN without a significant drop in the accuracy of the model. 1: Pruning based on Taylor expansion of change in cost function Delta C. 2: Pruning based on L2 normalization of activation maps. 3: Pruning based on a combination of method 1 and method 2. The proposed methods use various ranking methods to rank the convolution kernels and prune the lower ranked filters afterwards SqueezeNet model is fine-tuned by backpropagation. Transfer learning technique is used to train the SqueezeNet on the CIFAR-10 dataset. Results show that the proposed approach reduces the SqueezeNet model by 72% without a significant drop in the accuracy of the model (optimal pruning efficiency result). Results also show that Pruning based on a combination of Taylor expansion of the cost function and L2 normalization of activation maps achieves better pruning efficiency compared to other individual pruning criteria and most of the pruned kernels are from mid and high-level layers. The Pruned model is deployed on BlueBox 2.0 using RTMaps software and model performance was evaluated.Item Real-time Implementation of RMNv2 Classifier in NXP Bluebox 2.0 and NXP i.MX RT1060(IEEE, 2020-08) Ayi, Maneesh; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyWith regards to Advanced Driver Assistance Systems in vehicles, vision and image-based ADAS is profoundly well known since it utilizes Computer vision algorithms, for example, object detection, street sign identification, vehicle control, impact cautioning, and so on., to aid sheltered and smart driving. Deploying these algorithms directly in resource-constrained devices like mobile and embedded devices etc. is not possible. Reduced Mobilenet V2 (RMNv2) is one of those models which is specifically designed for deploying easily in embedded and mobile devices. In this paper, we implemented a real-time RMNv2 image classifier in NXP Bluebox 2.0 and NXP i.MX RT1060. Because of its low model size of 4.3MB, it is very successful to implement this model in those devices. The model is trained and tested with the CIFAR10 dataset.