- Browse by Subject
Browsing by Subject "CDK8"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item CDK8/19 Mediator kinases potentiate induction of transcription by NFκB(National Academy of Sciences, 2017-09-19) Chen, Mengqian; Liang, Jiaxin; Ji, Hao; Yang, Zhengguan; Altilia, Serena; Hu, Bing; Schronce, Adam; McDermott, Martina S. J.; Schools, Gary P.; Lim, Chang-uk; Oliver, David; Shtutman, Michael S.; Lu, Tao; Stark, George R.; Porter, Donald C.; Broude, Eugenia V.; Roninson, Igor B.; Pharmacology and Toxicology, School of MedicineNuclear factor-κB (NFκB) transcription factors have been implicated in several major diseases, including inflammatory disorders, viral infections, and cancer. NFκB-inhibiting drugs typically have side effects, possibly due to sustained NFκB suppression. The ability to affect induced, but not basal, NFκB activity could provide therapeutic benefit without associated toxicity. We report that the transcription-regulating kinases CDK8/19 potentiate NFκB activity, including the expression of tumor-promoting proinflammatory cytokines, by enabling the completion of NFκB-initiated transcription. CDK8/19 inhibitors suppress the induction of gene expression by NFκB or other transcription factors, but generally do not affect basal expression of the same genes. The role of CDK8/19 in newly induced transcription identifies these kinases as mediators of transcriptional reprogramming, a key aspect of development, differentiation, and pathological processes., The nuclear factor-κB (NFκB) family of transcription factors has been implicated in inflammatory disorders, viral infections, and cancer. Most of the drugs that inhibit NFκB show significant side effects, possibly due to sustained NFκB suppression. Drugs affecting induced, but not basal, NFκB activity may have the potential to provide therapeutic benefit without associated toxicity. NFκB activation by stress-inducible cell cycle inhibitor p21 was shown to be mediated by a p21-stimulated transcription-regulating kinase CDK8. CDK8 and its paralog CDK19, associated with the transcriptional Mediator complex, act as coregulators of several transcription factors implicated in cancer; CDK8/19 inhibitors are entering clinical development. Here we show that CDK8/19 inhibition by different small-molecule kinase inhibitors or shRNAs suppresses the elongation of NFκB-induced transcription when such transcription is activated by p21-independent canonical inducers, such as TNFα. On NFκB activation, CDK8/19 are corecruited with NFκB to the promoters of the responsive genes. Inhibition of CDK8/19 kinase activity suppresses the RNA polymerase II C-terminal domain phosphorylation required for transcriptional elongation, in a gene-specific manner. Genes coregulated by CDK8/19 and NFκB include IL8, CXCL1, and CXCL2, which encode tumor-promoting proinflammatory cytokines. Although it suppressed newly induced NFκB-driven transcription, CDK8/19 inhibition in most cases had no effect on the basal expression of NFκB-regulated genes or promoters; the same selective regulation of newly induced transcription was observed with other transcription signals potentiated by CDK8/19. This selective role of CDK8/19 identifies these kinases as mediators of transcriptional reprogramming, a key aspect of development and differentiation as well as pathological processes.Item H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer(Elsevier, 2016-11) Ohtsuka, Masahisa; Ling, Hui; Ivan, Cristina; Pichler, Martin; Matsushita, Daisuke; Goblirsch, Matthew; Stiegelbauer, Verena; Shigeyasu, Kunitoshi; Zhang, Xinna; Chen, Meng; Vidhu, Fnu; Bartholomeusz, Geoffrey A.; Toiyama, Yuji; Kusunoki, Masato; Doki, Yuichiro; Mori, Masaki; Song, Shumei; Gunther, Jillian R.; Krishnan, Sunil; Slaby, Ondrej; Goel, Ajay; Ajani, Jaffer A.; Radovich, Milan; Calin, George A.; Department of Surgery, IU School of MedicineThe clinical significance of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remains largely unexplored. Here, we analyzed a large panel of lncRNA candidates with The Cancer Genome Atlas (TCGA) CRC dataset, and identified H19 as the most significant lncRNA associated with CRC patient survival. We further validated such association in two independent CRC cohorts. H19 silencing blocked G1-S transition, reduced cell proliferation, and inhibited cell migration. We profiled gene expression changes to gain mechanism insight of H19 function. Transcriptome data analysis revealed not only previously identified mechanisms such as Let-7 regulation by H19, but also RB1-E2F1 function and β-catenin activity as essential upstream regulators mediating H19 function. Our experimental data showed that H19 affects phosphorylation of RB1 protein by regulating gene expression of CDK4 and CCND1. We further demonstrated that reduced CDK8 expression underlies changes of β-catenin activity, and identified that H19 interacts with macroH2A, an essential regulator of CDK8 gene transcription. However, the relevance of H19-macroH2A interaction in CDK8 regulation remains to be experimentally determined. We further explored the clinical relevance of above mechanisms in clinical samples, and showed that combined analysis of H19 with its targets improved prognostic value of H19 in CRC.