ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "CD8 T cell"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Disease Progression in Children With Perinatal Human Immunodeficiency Virus Correlates With Increased PD-1+ CD8 T Cells That Coexpress Multiple Immune Checkpoints
    (Oxford University Press, 2021) Tailor, Janki; Foldi, Julia; Generoso, Matthew; McCarty, Bret; Alankar, Aparna; Kilberg, Max; Mwamzuka, Mussa; Marshed, Fatma; Ahmed, Aabid; Liu, Mengling; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka; Pediatrics, School of Medicine
    Background: PD-1 marks exhausted T cells, with weak effector functions. Adults living with human immunodeficiency virus (HIV) have increased levels of PD-1+ CD8 T cells that correlate with HIV disease progression, yet little is known about the role of PD-1+ CD8 T cells in children with perinatal HIV. Methods: We enrolled 76 Kenyan children with perinatal HIV and 43 children who were HIV unexposed and quantified PD-1 levels on CD8 T cells; their coexpression with immune checkpoints (ICs) 2B4, CD160, and TIM3; correlates with immune activation and HIV disease progression; and HIV-specific and -nonspecific proliferative responses. Results: PD-1+ CD8 T-cell frequencies are elevated in children with perinatal HIV and associated with disease progression. The majority of PD-1+ CD8 T cells coexpress additional ICs. ART initiation lowers total PD-1 levels and coexpression of multiple ICs. The frequency of PD-1+2B4+CD160+TIM3- in PD-1+ CD8 T cells predicts weaker HIV-specific proliferative responses, suggesting that this subset is functionally exhausted. Conclusions: Children with perinatal HIV have high levels of PD-1+ CD8 T cells that are a heterogeneous population differentially coexpressing multiple ICs. Understanding the complex interplay of ICs is essential to guide the development of PD-1-directed immunotherapies for pediatric HIV remission and cure.
  • Loading...
    Thumbnail Image
    Item
    Host Factors That Influence Coxsackievirus B3 Replication and Pathogenensis
    (2023-04) Dhalech, Adeeba Haroon; Robinson, Christopher M.; Hurley, Thomas D.; Katzenellenbogen, Rachel A.; Richer, Martin J.; Spinola, Stanley M.
    Enteric viruses are infectious human pathogens that initiate infection in the gastrointestinal tract. They follow a fecal-oral route of transmission and are spread by contamination of food, water, or contact between individuals. Furthermore, enteric viruses also cause significant morbidity, mortality, and economic burdens yearly. Coxsackievirus (CV) is commonly isolated among enteric viruses and is an etiological agent of hand, foot, and mouth disease, hemorrhagic conjunctivitis, and myocarditis. The virus predominantly infects infants and young children and accounts for 11% of the fatality rate in neonates. Despite CV’s impact on human health, there are no treatments or vaccines for CV infections. Using a mouse model to study a key CV, Coxsackievirus B3 (CVB3), our laboratory has found two critical factors that impact CVB3 replication and pathogenesis. First, we have demonstrated that intestinal bacteria enhance intestinal CVB3 replication. We found that certain specific bacteria (Salmonella enterica) and its cell wall components, like lipopolysaccharides (LPS), enhanced CVB3 stability and infectivity in vitro. Additionally, we found that particular constituents of LPS are required for stability to occur. These data suggest that specific bacteria may be integral in maintaining CVB3 infectivity in the intestine. Besides virus-microbiome interaction, CVB3 is also impacted by sex hormones. Using castrated mice models, we observed a sex bias to CVB3 infection, with male mice succumbing to CVB3-induced disease at an increased rate compared to female mice. Our data suggest that testosterone, a predominant male sex hormone, enhanced CVB3 intestinal replication and viral dissemination to organs in male and female mice, but lethality only in male mice. Moreover, testosterone also affected the immune response by reducing the activation of the CD8+ T cells. CD8+ T cells are required to clear the viral infection and are integral in vaccine development. In contrast, we found an enhanced CD8+ T cell response in female mice to CVB3 infection, suggesting a sex-dependent T cell response that may underlie the sex bias in disease. Overall, these data represent an essential advancement in the CV field and will help develop future therapeutics and aid in vaccine design to limit CV infections.
  • Loading...
    Thumbnail Image
    Item
    Immune Responses to Muscle-Directed Adeno-Associated Viral Gene Transfer in Clinical Studies
    (Mary Ann Liebert, 2023) Kumar, Sandeep R. P.; Duan, Dongsheng; Herzog, Roland W.; Pediatrics, School of Medicine
    Muscle-directed gene therapy with adeno-associated viral (AAV) vectors is undergoing clinical development for treating neuromuscular disorders and for systemic delivery of therapeutic proteins. Although these approaches show considerable therapeutic benefits, they are also prone to induce potent immune responses against vector or transgene products owing to the immunogenic nature of the intramuscular delivery route, or the high doses required for systemic delivery to muscle. Major immunological concerns include antibody formation against viral capsid, complement activation, and cytotoxic T cell responses against capsid or transgene products. They can negate therapy and even lead to life-threatening immunotoxicities. Herein we review clinical observations and provide an outlook for how the field addresses these problems through a combination of vector engineering and immune modulation.
  • Loading...
    Thumbnail Image
    Item
    Redundancy in Innate Immune Pathways That Promote CD8+ T-Cell Responses in AAV1 Muscle Gene Transfer
    (MDPI, 2024-09-24) Li, Ning; Kumar, Sandeep R. P.; Cao, Di; Munoz-Melero, Maite; Arisa, Sreevani; Brian, Bridget A.; Greenwood, Calista M.; Yamada, Kentaro; Duan, Dongsheng; Herzog, Roland W.; Pediatrics, School of Medicine
    While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo gene therapy applications, they continue to be hampered by the immune system. Here, we sought to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated, and vector engineering approaches, we show that blockade of at least two innate pathways is required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited utility in preventing antibody formation against the transgene product. Further, even low-frequency CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient animals that received a low vector dose. However, we provide evidence that CpG depletion of vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses in muscle gene transfer because of the redundancy of immune-activating pathways.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University