ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "CAD/CAM"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    3D printing in surgical simulation: emphasized importance in the COVID-19 pandemic era
    (Future Medicine, 2021-03-01) Michaels, Ross; Witsberger, Chelsey A; Powell, Allison R; Koka, Krishna; Cohen, Katheryn; Nourmohammadi, Zahra; Green, Glen E; Zopf, David A; Otolaryngology -- Head and Neck Surgery, School of Medicine
    Historically, surgical training was an apprenticeship model of see one, do one, teach one. However, a proficiency-based training approach has become increasingly implemented for assessing surgical skills with performance scores used as benchmarks to track trainee proficiency [1]. Surgical simulators are starting to be utilized more to assess proficiency in trainees on certain procedures with many residency programs having simulation as a piece of their training curriculum. Today, simulation in surgical training takes many forms. Live animals and cadavers are often implemented since these simulators can simulate operating on realistic tissue and on human anatomy respectively. There are also basic simulators that are models that simulate a component of an operation such as suturing or knot-tying. These help trainees practice certain surgical skills necessary for completing a procedure. Some of these simulators have become more complex and simulate several steps or even an entire procedure such as joint replacements and fixating fractures [1]. With the increased availability in 3D printing technology and a push toward personalized medicine, 3D printing research has exponentially increased in recent years and has been an area of investigation for the development of surgical simulators [2]. Using a 3D printer to construct models for simulation leads to vast opportunity to customize the simulator while significantly reducing cost. Prior to the advent of 3D printing and additive manufacturing, computed tomography (CT) data were used to construct anatomic models using subtractive manufacturing with the first model made in 1979 [3]. Commercial 3D printers became available in the 1980s and were introduced into the medical field in 1994 [4]. Currently, 3D printing has several surgical applications including anatomic models for surgical planning, simulation and education; implants and prostheses; and surgical guides [3].
  • Loading...
    Thumbnail Image
    Item
    Effects of Various Thicknesses on Load to Fracture of Posterior CAD/CAM Lithium Disilicate Glass Ceramic Crowns Subjected to Cyclic Fatigue
    (2015) Al-Angari, Nadia; Platt, Jeffrey A.; Bottino, Marco C.; Haug, Steven P.; Brown, David T.; Levon, John A.
    Background: New glass ceramics and Computer-Aided Design/Computer Assisted Manufacture (CAD/CAM) have become common aspects of modern dentistry. The use of posterior ceramic crowns with a high level of esthetics, fabricated using the CAD/CAM technology is a current treatment modality. Several materials have been used to fabricate these crowns, including lithium disilicate glass-ceramics, which have not been fully investigated in the literature. Objective: to investigate the load to fracture of lithium disilicate glass ceramic posterior crowns fabricated by CAD/CAM technology with different material thicknesses adhesively cemented on epoxy resin. Methods: Four groups of different ceramic thicknesses (0.5 mm, 1 mm, 1.5 mm, and 2 mm) were fabricated by milling CAD/CAM lithium disilicate IPS emax CAD blocks. A total of 68 posterior crowns were surface treated and luted with a resin adhesive cement on an epoxy resin model. Samples were fatigued then loaded to fracture using a universal testing machine to test the fracture strength. Statistical comparisons between various crown thicknesses were performed using one-way ANOVA followed by Fisher's Protected Least Significant Differences. Results: There was a significant difference in the load-to-fracture (N) value for all comparisons of the four thickness groups (p < 0.0001), except 2 mm vs. 1.5 mm (p = 0.325). The mean load-to-fracture (N) was significantly higher for 2 mm than for 1 mm or 0.5 mm. Additionally, the mean load-to-fracture was significantly higher for 1.5 mm than for 1 mm or 0.5 mm. Furthermore, the mean load-to-fracture was significantly higher for 1 mm than for 0.5 mm. Conclusion: Within the limitation of this study, it is advisable for clinical applications to consider a crown thickness of 1.5 mm or greater of milled lithium disilicate for posterior single teeth.
  • Loading...
    Thumbnail Image
    Item
    Stepwise stress testing of different CAD/CAM lithium disilicate veneer application methods to lithium disilicate substructure
    (2019) May, Jaren Thomas; Feitosa Sochacki, Sabrina; Diefenderfer, Kim; Cook, N. Blaine
    Objective: CAD/CAM technology allows fabrication of thin lithium disilicate (LD) veneers to a LD crown substructure in place of using traditional feldspathic porcelain (FP) which has inferior mechanical properties. This project investigated the effect of different LD veneer applications to LD substructure on the biaxial flexural fatigue of LD veneer/substructure restorations. Materials/Methods: Forty-five LD discs (Ø = 120.7 mm) were fabricated that, when combined with the veneering discs, achieve final dimensions of (Ø = 121.2mm). Experimental groups were (n = 15) as follows: (1) Resin Bonded LD Veneer (RBLDV), LD veneer (Ø = 120.5 mm) adhesively cemented to LD (0.7 mm); (2) Sintered LD Veneer (SLDV), LD veneer (Ø=120.5 mm) sintered to LD (0.7 mm); (3) Sintered Feldspathic Veneer (SFV), feldspathic porcelain (FP) applied to LD discs to achieve a final dimension of (Ø = 121.2 mm). A fourth group of (1.2 mm) monolithic LD served as the control. Weibull-distribution survival analysis was used to compare the differences of the resistance to fracture after fatigue between groups. Total number of cycles were analyzed using one-way Anova (p < 0.05). Hypothesis: Adhering or sintering a thin laminate layer of LD on another LD surface would result in increased fracture resistance in comparison to sintered FP on LD. Results: The SFV group had significantly lower fatigue resistance than SLDV and RBLDV groups (p < 0.05). The RBLDV group fractures resulted in significantly more fractured fragments in comparison to the other groups. No statistical difference was observed in the number of cycles. The results also showed that the LD veneered groups presented similar resistance to fatigue as monolithic discs of the same overall dimensions. Conclusion: The hypothesis was accepted suggesting that veneering a LD substructure with a LD veneer, bonded or sintered, has increased resistance to fatigue as FP veneering material on a LD substructure. In addition, it was observed to have similar resistance to fatigue in comparison to the monolithic LD group.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University