- Browse by Subject
Browsing by Subject "Brain malformation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome(Elsevier, 2022) Stephenson, Sarah E.M.; Costain, Gregory; Blok, Laura E.R.; Silk, Michael A.; Nguyen, Thanh Binh; Dong, Xiaomin; Alhuzaimi, Dana E.; Dowling, James J.; Walker, Susan; Amburgey, Kimberly; Hayeems, Robin Z.; Rodan, Lance H.; Schwartz, Marc A.; Picker, Jonathan; Lynch, Sally A.; Gupta, Aditi; Rasmussen, Kristen J.; Schimmenti, Lisa A.; Klee, Eric W.; Niu, Zhiyv; Agre, Katherine E.; Chilton, Ilana; Chung, Wendy K.; Revah-Politi, Anya; Au, P.Y. Billie; Griffith, Christopher; Racobaldo, Melissa; Raas-Rothschild, Annick; Zeev, Bruria Ben; Barel, Ortal; Moutton, Sebastien; Morice-Picard, Fanny; Carmignac, Virginie; Cornaton, Jenny; Marle, Nathalie; Devinsky, Orrin; Stimach, Chandler; Burns Wechsler, Stephanie; Hainline, Bryan E.; Sapp, Katie; Willems, Marjolaine; Bruel, Ange-Line; Dias, Kerith-Rae; Evans, Carey-Anne; Roscioli, Tony; Sachdev, Rani; Temple, Suzanna E.L.; Zhu, Ying; Baker, Joshua J.; Scheffer, Ingrid E.; Gardiner, Fiona J.; Schneider, Amy L.; Muir, Alison M.; Mefford, Heather C.; Crunk, Amy; Heise, Elizabeth M.; Millan, Francisca; Monaghan, Kristin G.; Person, Richard; Rhodes, Lindsay; Richards, Sarah; Wentzensen, Ingrid M.; Cogné, Benjamin; Isidor, Bertrand; Nizon, Mathilde; Vincent, Marie; Besnard, Thomas; Piton, Amelie; Marcelis, Carlo; Kato, Kohji; Koyama, Norihisa; Ogi, Tomoo; Suk-Ying Goh, Elaine; Richmond, Christopher; Amor, David J.; Boyce, Jessica O.; Morgan, Angela T.; Hildebrand, Michael S.; Kaspi, Antony; Bahlo, Melanie; Friðriksdóttir, Rún; Katrínardóttir, Hildigunnur; Sulem, Patrick; Stefánsson, Kári; Björnsson, Hans Tómas; Mandelstam, Simone; Morleo, Manuela; Mariani, Milena; TUDP Study Group; Scala, Marcello; Accogli, Andrea; Torella, Annalaura; Capra, Valeria; Wallis, Mathew; Jansen, Sandra; Weisfisz, Quinten; de Haan, Hugoline; Sadedin, Simon; Broad Center for Mendelian Genomics; Lim, Sze Chern; White, Susan M.; Ascher, David B.; Schenck, Annette; Lockhart, Paul J.; Christodoulou, John; Tan, Tiong Yang; Medical and Molecular Genetics, School of MedicineNeurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.Item Molecular cytogenetic analysis of patients with holoprosencephaly and structural rearrangements of 7q(Wiley, 1998-02-26) Vance, Gail H.; Nickerson, Catherine; Sarnat, Lauren; Zhang, Aiwu; Henegariu, Octavian; Morichon-Delvallez, Nicole; Butler, Merlin G.; Palmer, Catherine G.; Medical and Molecular Genetics, School of MedicineThe holoprosencephaly (HPE) sequence is a malformation complex with abnormal midline cleavage of the embryonic forebrain. HPE is genetically heterogeneous with at least 6 different chromosome regions containing genes involved in the expression of the phenotype. HPE3, recently identified as the human Sonic hedgehog gene, is localized to 7q36. We have used fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) amplification in 5 cell lines from patients with HPE (3 cases), HPE and sacral agenesis (1 case), and microcephaly (1 case) to further define the structural rearrangements of the long arm of chromosome 7 in each case. All cell lines demonstrated loss of material in the critical region of HPE3 at band 7q36, which includes the Sonic hedgehog gene. We report here the analysis of these patient cell lines.