- Browse by Subject
Browsing by Subject "Brain connectome"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Brain explorer for connectomic analysis(Springer, 2017-08-23) Li, Huang; Fang, Shiaofen; Contreras, Joey A.; West, John D.; Risacher, Shannon L.; Wang, Yang; Sporns, Olaf; Saykin, Andrew J.; Goñi, Joaquín; Shen, Li; Radiology and Imaging Sciences, School of MedicineVisualization plays a vital role in the analysis of multimodal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional, and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomical structure. In this paper, new surface texture techniques are developed to map non-spatial attributes onto both 3D brain surfaces and a planar volume map which is generated by the proposed volume rendering technique, spherical volume rendering. Two types of non-spatial information are represented: (1) time series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image-based phenotypic biomarkers for brain diseases.Item Integrated Visualization of Human Brain Connectome Data(Springer, 2015-08) Li, Huang; Fang, Shiaofen; Goni, Joaquin; Contreras, Joey A.; Liang, Yanhua; Cai, Chengtao; West, John D.; Risacher, Shannon L.; Wang, Yang; Sporns, Olaf; Saykin, Andrew J.; Shen, Li; Department of Radiology and Imaging Sciences, IU School of MedicineVisualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases.Item Joint Exploration and Mining of Memory-Relevant Brain Anatomic and Connectomic Patterns via a Three-Way Association Model(IEE, 2018-04) Yan, Jingwen; Liu, Kefei; Li, Huang; Amico, Enrico; Risacher, Shannon L.; Wu, Yu-Chien; Fang, Shiaofen; Sporns, Olaf; Saykin, Andrew J.; Goñi, Joaquín; Shen, Li; BioHealth Informatics, School of Informatics and ComputingEarly change in memory performance is a key symptom of many brain diseases, but its underlying mechanism remains largely unknown. While structural MRI has been playing an essential role in revealing potentially relevant brain regions, increasing availability of diffusion MRI data (e.g., Human Connectome Project (HCP)) provides excellent opportunities for exploration of their complex coordination. Given the complementary information held in these two imaging modalities, we hypothesize that studying them as a whole, rather than individually, and exploring their association will provide us valuable insights of the memory mechanism. However, many existing association methods, such as sparse canonical correlation analysis (SCCA), only manage to handle two-way association and thus cannot guarantee the selection of biomarkers and associations to be memory relevant. To overcome this limitation, we propose a new outcome-relevant SCCA model (OSCCA) together with a new algorithm to enable the three-way associations among brain connectivity, anatomic structure and episodic memory performance. In comparison with traditional SCCA, we demonstrate the effectiveness of our model with both synthetic and real data from the HCP cohort.