- Browse by Subject
Browsing by Subject "Brain atrophy"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE ε4 on Alzheimer's Disease Risk in a Multiracial Sample(MDPI, 2019-08-16) Choi, Kyu Yeong; Lee, Jang Jae; Gunasekaran, Tamil Iniyan; Kang, Sarang; Lee, Wooje; Jeong, Jangho; Lim, Ho Jae; Zhang, Xiaoling; Zhu, Congcong; Won, So-Yoon; Choi, Yu Yong; Seo, Eun Hyun; Lee, Seok Cheol; Gim, Jungsoo; Chung, Ji Yeon; Chong, Ari; Byun, Min Soo; Seo, Sujin; Ko, Pan-Woo; Han, Ji-Won; McLean, Catriona; Farrell, John; Lunetta, Kathryn L.; Miyashita, Akinori; Hara, Norikazu; Won, Sungho; Choi, Seong-Min; Ha, Jung-Min; Jeong, Jee Hyang; Kuwano, Ryozo; Song, Min Kyung; An, Seong Soo A.; Lee, Young Min; Park, Kyung Won; Lee, Ho-Won; Choi, Seong Hye; Rhee, Sangmyung; Song, Woo Keun; Lee, Jung Sup; Mayeux, Richard; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Choo, IL Han; Nho, Kwangsik; Kim, Ki-Woong; Lee, Dong Young; Kim, SangYun; Kim, Byeong C.; Kim, Hoowon; Jun, Gyungah R.; Schellenberg, Gerard D.; Ikeuchi, Takeshi; Farrer, Lindsay A.; Lee, Kun Ho; Radiology and Imaging Sciences, School of MedicineVariants in the APOE gene region may explain ethnic differences in the association of Alzheimer's disease (AD) with ε4. Ethnic differences in allele frequencies for three APOE region SNPs (single nucleotide polymorphisms) were identified and tested for association in 19,398 East Asians (EastA), including Koreans and Japanese, 15,836 European ancestry (EuroA) individuals, and 4985 African Americans, and with brain imaging measures of cortical atrophy in sub-samples of Koreans and EuroAs. Among ε4/ε4 individuals, AD risk increased substantially in a dose-dependent manner with the number of APOE promoter SNP rs405509 T alleles in EastAs (TT: OR (odds ratio) = 27.02, p = 8.80 × 10-94; GT: OR = 15.87, p = 2.62 × 10-9) and EuroAs (TT: OR = 18.13, p = 2.69 × 10-108; GT: OR = 12.63, p = 3.44 × 10-64), and rs405509-T homozygotes had a younger onset and more severe cortical atrophy than those with G-allele. Functional experiments using APOE promoter fragments demonstrated that TT lowered APOE expression in human brain and serum. The modifying effect of rs405509 genotype explained much of the ethnic variability in the AD/ε4 association, and increasing APOE expression might lower AD risk among ε4 homozygotes.Item Associations between hippocampal morphometry and neuropathologic markers of Alzheimer's disease using 7 T MRI(Elsevier, 2017-04-21) Blanken, Anna E.; Hurtz, Sona; Zarow, Chris; Biado, Kristina; Honarpisheh, Hedieh; Somme, Johanne; Brook, Jenny; Tung, Spencer; Kraft, Emily; Lo, Darrick; Ng, Denise W.; Vinters, Harry V.; Apostolova, Liana G.; Department of Neurology, School of MedicineHippocampal atrophy, amyloid plaques, and neurofibrillary tangles are established pathologic markers of Alzheimer's disease. We analyzed the temporal lobes of 9 Alzheimer's dementia (AD) and 7 cognitively normal (NC) subjects. Brains were scanned post-mortem at 7 Tesla. We extracted hippocampal volumes and radial distances using automated segmentation techniques. Hippocampal slices were stained for amyloid beta (Aβ), tau, and cresyl violet to evaluate neuronal counts. The hippocampal subfields, CA1, CA2, CA3, CA4, and subiculum were manually traced so that the neuronal counts, Aβ, and tau burden could be obtained for each region. We used linear regression to detect associations between hippocampal atrophy in 3D, clinical diagnosis and total as well as subfield pathology burden measures. As expected, we found significant correlations between hippocampal radial distance and mean neuronal count, as well as diagnosis. There were subfield specific associations between hippocampal radial distance and tau in CA2, and cresyl violet neuronal counts in CA1 and subiculum. These results provide further validation for the European Alzheimer's Disease Consortium Alzheimer's Disease Neuroimaging Initiative Center Harmonized Hippocampal Segmentation Protocol (HarP).Item BrainAGE Estimation: Influence of Field Strength, Voxel Size, Race, and Ethnicity(medRxiv, 2023-12-05) Dempsey, Desarae A.; Deardorff, Rachael; Wu, Yu-Chien; Yu, Meichen; Apostolova, Liana G.; Brosch, Jared; Clark, David G.; Farlow, Martin R.; Gao, Sujuan; Wang, Sophia; Saykin, Andrew J.; Risacher, Shannon L.; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineThe BrainAGE method is used to estimate biological brain age using structural neuroimaging. However, the stability of the model across different scan parameters and races/ethnicities has not been thoroughly investigated. Estimated brain age was compared within- and across- MRI field strength and across voxel sizes. Estimated brain age gap (BAG) was compared across demographically matched groups of different self-reported races and ethnicities in ADNI and IMAS cohorts. Longitudinal ComBat was used to correct for potential scanner effects. The brain age method was stable within field strength, but less stable across different field strengths. The method was stable across voxel sizes. There was a significant difference in BAG between races, but not ethnicities. Correction procedures are suggested to eliminate variation across scanner field strength while maintaining accurate brain age estimation. Further studies are warranted to determine the factors contributing to racial differences in BAG.Item Common folate gene variant, MTHFR C677T, is associated with brain structure in two independent cohorts of people with mild cognitive impairment(Elsevier, 2012-10-04) Rajagopalan, Priya; Jahanshad, Neda; Stein, Jason L.; Hua, Xue; Madsen, Sarah K.; Kohannim, Omid; Hibar, Derrek P.; Toga, Arthur W.; Jack, Clifford R., Jr.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Bis, Joshua C.; Kuller, Lewis H.; Riverol, Mario; Becker, James T.; Lopez, Oscar L.; Thompson, Paul M.; Alzheimer's Disease Neuroimaging Initiative (ADNI); Cardiovascular Health Study (CHS); Radiology and Imaging Sciences, School of MedicineA commonly carried C677T polymorphism in a folate-related gene, MTHFR, is associated with higher plasma homocysteine, a well-known mediator of neuronal damage and brain atrophy. As homocysteine promotes brain atrophy, we set out to discover whether people carrying the C677T MTHFR polymorphism which increases homocysteine, might also show systematic differences in brain structure. Using tensor-based morphometry, we tested this association in 359 elderly Caucasian subjects with mild cognitive impairment (MCI) (mean age: 75 ± 7.1 years) scanned with brain MRI and genotyped as part of Alzheimer's Disease Neuroimaging Initiative. We carried out a replication study in an independent, non-overlapping sample of 51 elderly Caucasian subjects with MCI (mean age: 76 ± 5.5 years), scanned with brain MRI and genotyped for MTHFR, as part of the Cardiovascular Health Study. At each voxel in the brain, we tested to see where regional volume differences were associated with carrying one or more MTHFR 'T' alleles. In ADNI subjects, carriers of the MTHFR risk allele had detectable brain volume deficits, in the white matter, of up to 2-8% per risk T allele locally at baseline and showed accelerated brain atrophy of 0.5-1.5% per T allele at 1 year follow-up, after adjusting for age and sex. We replicated these brain volume deficits of up to 5-12% per MTHFR T allele in the independent cohort of CHS subjects. As expected, the associations weakened after controlling for homocysteine levels, which the risk gene affects. The MTHFR risk variant may thus promote brain atrophy by elevating homocysteine levels. This study aims to investigate the spatially detailed effects of this MTHFR polymorphism on brain structure in 3D, pointing to a causal pathway that may promote homocysteine-mediated brain atrophy in elderly people with MCI.Item Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease(Wiley, 2021-07-05) Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng-Yang M.; Wolf, Amy; Allen, Isabel Elaine; Salloway, Stephen; Chhatwal, Jasmeer; Brickman, Adam M.; Reyes-Dumeyer, Dolly; Bateman, Randal J.; Benzinger, Tammie L.S.; Morris, John C.; Ances, Beau M.; Joseph-Mathurin, Nelly; Perrin, Richard J.; Gordon, Brian A.; Levin, Johannes; Vöglein, Jonathan; Jucker, Mathias; la Fougère, Christian; Martins, Ralph N.; Sohrabi, Hamid R.; Taddei, Kevin; Villemagne, Victor L.; Schofield, Peter R.; Brooks, William S.; Fulham, Michael; Masters, Colin L.; Ghetti, Bernardino; Saykin, Andrew J.; Jack, Clifford R.; Graff-Radford, Neill R.; Weiner, Michael; Cash, David M.; Allegri, Ricardo F.; Chrem, Patricio; Yi, Su; Miller, Bruce L.; Rabinovici, Gil D.; Rosen, Howard J.; Pathology and Laboratory Medicine, School of MedicineIntroduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Item Peripheral inflammation is associated with brain atrophy and cognitive decline linked to mild cognitive impairment and Alzheimer's disease(Springer Nature, 2024-07-29) Liang, Nuanyi; Nho, Kwangsik; Newman, John W.; Arnold, Matthias; Huynh, Kevin; Meikle, Peter J.; Borkowski, Kamil; Kaddurah‑Daouk, Rima; Alzheimer’s Disease Metabolomics Consortium; Radiology and Imaging Sciences, School of MedicineInflammation is an important factor in Alzheimer’s disease (AD). An NMR measurement in plasma, glycoprotein acetyls (GlycA), captures the overall level of protein production and glycosylation implicated in systemic inflammation. With its additional advantage of reducing biological variability, GlycA might be useful in monitoring the relationship between peripheral inflammation and brain changes relevant to AD. However, the associations between GlycA and these brain changes have not been fully evaluated. Here, we performed Spearman’s correlation analyses to evaluate these associations cross-sectionally and determined whether GlycA can inform AD-relevant longitudinal measurements among participants in the Alzheimer’s Disease Neuroimaging Initiative (n = 1506), with additional linear models and stratification analyses to evaluate the influences of sex or diagnosis status and confirm findings from Spearman’s correlation analyses. We found that GlycA was elevated in AD patients compared to cognitively normal participants. GlycA correlated negatively with multiple concurrent regional brain volumes in females diagnosed with late mild cognitive impairment (LMCI) or AD. Baseline GlycA level was associated with executive function decline at 3–9 year follow-up in participants diagnosed with LMCI at baseline, with similar but not identical trends observed in the future decline of memory and entorhinal cortex volume. Results here indicated that GlycA is an inflammatory biomarker relevant to AD pathogenesis and that the stage of LMCI might be relevant to inflammation-related intervention.Item The role of TGFbeta signals in Lead (Pb)‐induced Cerebral Amyloid Angiopathy(Wiley, 2025-01-03) Gu, Huiying; Luo, Alexandria; Zheng, Wei; Du, Yansheng; Neurology, School of MedicineBackground: Mounting evidence suggests that acute and past exposure to the environmental toxicant lead (Pb) results in longitudinal decline in cognitive function and brain atrophy. In animals, chronic Pb exposure can increase brain Aβ deposition. However, it remains unclear how Pb induces different natures of amyloid depositions and underlying mechanisms to contribute to the pathogenesis of AD and related dementia. Method: Female APP/PS1 mice at 8 weeks old were administered with either 50 mg/kg Pb‐acetate (PbAc) (i.e., 27 mg Pb/kg) via oral gavage or an equivalent molar concentration of Na‐acetate (NaAc) once daily for additional 3 days or 8 weeks, in the presence or absence of an PAI‐1 inhibitor (12mg/kg). Parenchymal plaques and vascular amyloid deposition were quantitated by double staining with Thioflavin S and anti‐collagen IV antibody. Brain sections were also stained with anti‐NeuN (for neurons), anti‐myelin basic protein (for myelination) and anti‐rabbit FITC (for reactive astrocytes) antibodies. Assays for perivascular drainage as well as in vitro vascular binding with Aβ and microglial endocytosis were also performed. Result: 2‐month Pb exposure increased vascular Aβ deposits in neocortex of female APP/PS1 mice at the 4‐month of age by almost 300% (p<0.01). In contrast, Pb only increased parenchymal amyloid in the same brain areas by 86.7% (p<0.05). Demyelination, but not neuronal loss was observed in Pb‐treated AD mice that had significantly cognitive deficits detected by Y‐maze. Following Pb treatments, the ratios of Aβ1‐40/Aβ1‐42 in Pb‐treated groups increased to 0.58 ± 0.21 in the cortical parenchyma and 0.50 ± 0.10 in the brain vasculature, as compared to those in the control group (0.39 ± 0.09 and 0.11 ± 0.02). Additionally, TGF‐β1, Smad2, PAI‐1 and fibronectin were significantly induced in cerebrovasculature isolated from mice treated with 27 mg/kg of Pb for 3 days, accompanied by dramatic inhibition of perivascular drainage and vascular binding with Aβ1‐40. Furthermore, Pb exposure induced microglial TGF‐β1 and inhibited clearance of Aβ40 and LRP‐1 expression. Interestingly enough, all of these alterations induced by Pb exposure could be markedly ameliorated by a PAI‐1 inhibitor. Conclusion: TGF‐β signals play distinct roles in Pb‐induced amyloid pathology.