- Browse by Subject
Browsing by Subject "Brain -- metabolism"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The collaborative study on the genetics of alcoholism: an update(The National Institute on Alcohol Abuse and Alcoholism, 2002) Edenberg, Howard J.; Biochemistry and Molecular Biology, School of MedicineThe Collaborative Study on the Genetics of Alcoholism (COGA) is a large-scale family study designed to identify genes that affect the risk for alcoholism (i.e., alcohol dependence) and alcohol-related characteristics and behaviors (i.e., phenotypes1). This collaborative project is funded by the National Institute on Alcohol Abuse and Alcoholism. Data collection, analysis, and/or storage for this study take place at nine sites across the United States. Because alcoholism is a complex genetic disorder, the COGA researchers expected that multiple genes would contribute to the risk. In other words, there will be no single “gene for alcoholism” but rather variations in many different genes that together, interacting with the environment, place some people at significantly higher risk for the disease. This genetic and environmental variability (i.e., heterogeneity) makes the task of identifying individual genes difficult. However, the COGA project was designed with these difficulties in mind and incorporated strategies to meet the challenges. This article briefly reviews these strategies and summarizes some of the results already obtained in the ongoing COGA study.Item Neuroimaging biomarkers of neurodegenerative diseases and dementia(Thieme, 2013-09) Risacher, Shannon L.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineNeurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.