- Browse by Subject
Browsing by Subject "Bone mechanical properties"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Assessing the inter- and intra-animal variability of in vivo OsteoProbe skeletal measures in untreated dogs(Elsevier, 2016-12) McNerny, Erin M.B.; Organ, Jason M.; Wallace, Joseph M.; Newman, Christopher L.; Brown, Drew M.; Allen, Matthew R.; Department of Anatomy and Cell Biology, School of MedicineThe OsteoProbe is a second-generation reference point indentation (RPI) device without a reference probe that is designed to simplify RPI testing for clinical use. Successful clinical implementation of the OsteoProbe would benefit from a better understanding of how its output, bone material strength index (BMSi), relates to the material properties of bone and under what conditions it reliably correlates with fracture risk. Large animal models have the potential to help fill this knowledge gap, as cadaveric studies are retrospective and limited by incomplete patient histories (including the potential use of bone matrix altering drugs such as bisphosphonates). The goal of this study was to assess the intra and inter-animal variability of OsteoProbe measures in untreated beagle dogs (n = 12), and to evaluate this variability in comparison to traditional mechanical testing. OsteoProbe measurements were performed in vivo on the left tibia of each dog and repeated 6 months later on the day of sacrifice. Within-animal variation of BMSi (CV of 5–10 indents) averaged 8.9 and 9.0% at the first and second timepoints, respectively. In contrast, inter-animal variation of BMSi increased from 5.3% to 9.1%. The group variation of BMSi was on par with that of traditional 3-point mechanical testing; inter-animal variation was 10% for ultimate force, 13% for stiffness, and 12% for total work as measured on the femur. There was no significant change in mean BMSi after 6 months, but the individual change with time across the 12 dogs was highly variable, ranging from − 12.4% to + 21.7% (mean 1.6%, SD 10.6%). No significant correlations were found between in vivo tibia BMSi and femur mechanical properties measured by ex vivo 3-pt bending, but this may be a limitation of sample size or the tests being performed on different bones. No relationship was found between BMSi and tissue mineral density, but a strong positive correlation was found between BMSi and tibia cortical thickness (ρ = 0.706, p = 0.010). This report shows that while the OsteoProbe device has inter-individual variability quite similar to that of traditional mechanical testing, the longitudinal changes show high levels of heterogeneity across subjects. We further highlight the need for standardization in post-testing data processing and further study of the relationships between OsteoProbe and traditional mechanical testing.Item Blueberry Polyphenols do not Improve Bone Mineral Density or Mechanical Properties in Ovariectomized Rats(Springer, 2022) Cladis, Dennis P.; Swallow, Elizabeth A.; Allen, Matthew R.; Hill Gallant, Kathleen M.; Weaver, Connie M.; Anatomy, Cell Biology and Physiology, School of MedicineOsteoporosis-related bone fragility fractures are a major public health concern. Given the potential for adverse side effects of pharmacological treatment, many have sought alternative treatments, including dietary changes. Based on recent evidence that polyphenol-rich foods, like blueberries, increase calcium absorption and bone mineral density (BMD), we hypothesized that blueberry polyphenols would improve bone biomechanical properties. To test this, 5-month-old ovariectomized Sprague-Dawley rats (n = 10/gp) were orally gavaged for 90 days with either a purified extract of blueberry polyphenols (0-1000 mg total polyphenols/kg bw/day) or lyophilized blueberries (50 mg total polyphenols/kg bw/day). Upon completion of the dosing regimen, right femur, right tibia, and L1-L4 vertebrae were harvested and assessed for bone mineral density (BMD), with femurs being further analyzed for biomechanical properties via three-point bending. There were no differences in BMD at any of the sites analyzed. For bone mechanical properties, the only statistically significant difference was the high dose group having greater ultimate stress than the medium dose, although in the absence of differences in other measures of bone mechanical properties, we concluded that this result, while statistically significant, had little biological significance. Our results indicate that blueberry polyphenols had little impact on BMD or bone mechanical properties in an animal model of estrogen deficiency-induced bone loss.Item Nmp4, a Regulator of Induced Osteoanabolism, Also Influences Insulin Secretion and Sensitivity(Springer, 2022) Bidwell, Joseph; Tersey, Sarah A.; Adaway, Michele; Bone, Robert N.; Creecy, Amy; Klunk, Angela; Atkinson, Emily G.; Wek, Ronald C.; Robling, Alexander G.; Wallace, Joseph M.; Evans-Molina, Carmella; Anatomy, Cell Biology and Physiology, School of MedicineA bidirectional and complex relationship exists between bone and glycemia. Persons with type 2 diabetes (T2D) are at risk for bone loss and fracture, however, heightened osteoanabolism may ameliorate T2D-induced deficits in glycemia as bone-forming osteoblasts contribute to energy metabolism via increased glucose uptake and cellular glycolysis. Mice globally lacking Nuclear Matrix Protein 4 (Nmp4), a transcription factor expressed in all tissues and conserved between humans and rodents, are healthy and exhibit enhanced bone formation in response to anabolic osteoporosis therapies. To test whether loss of Nmp4 similarly impacted bone deficits caused by diet induced obesity, male wild type (WT) and Nmp4−/− mice (8wks) were fed either low-fat diet (LFD) or high-fat diet (HFD) for 12wks. Endpoint parameters included bone architecture, structural and estimated tissue level mechanical properties, body weight/composition, glucose-stimulated insulin secretion, glucose tolerance, insulin tolerance and metabolic cage analysis. HFD diminished bone architecture and ultimate force and stiffness equally in both genotypes. Unexpectedly, the Nmp4−/− mice exhibited deficits in pancreatic β-cell function and were modestly glucose intolerant under normal diet conditions. Despite the β-cell deficits, the Nmp4−/− mice were less sensitive to HFD-induced weight gain, increases in % fat mass, and decreases in glucose tolerance and insulin sensitivity. We conclude that Nmp4 supports pancreatic β-cell function but suppresses peripheral glucose utilization, perhaps contributing to its suppression of induced skeletal anabolism. Selective disruption of Nmp4 in peripheral tissues may provide a strategy for improving both induced osteoanabolism and energy metabolism in comorbid patients.