- Browse by Subject
Browsing by Subject "Bone mass"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Bone Fragility in High Fat Diet-induced Obesity is Partially Independent of Type 2 Diabetes in Mice(Springer, 2024) Uppuganti, Sasidhar; Creecy, Amy; Fernandes, Daniel; Garrett, Kate; Donovan, Kara; Ahmed, Rafay; Voziyan, Paul; Rendina‑Ruedy, Elizabeth; Nyman, Jeffry S.; Orthopaedic Surgery, School of MedicineObesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or μCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (μCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.Item Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes(Springer, 2017-04) Alam, Imranul; Reilly, Austin M.; Alkhouli, Mohammed; Gerard-O’Riley, Rita L.; Kasipathi, Charishma; Oakes, Dana K.; Wright, Weston B.; Acton, Dena; McQueen, Amie K.; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.; Medicine, School of MedicineRecently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.Item C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis(Wiley, 2016-04) Meijome, Tomas E.; Baughman, Jenna T.; Hooker, R. Adam; Cheng, Ying-Hua; Ciovacco, Wendy A.; Balamohan, Sanjeev M.; Srinivasan, Trishya L.; Chitteti, Brahmananda R.; Eleniste, Pierre P.; Horowitz, Mark C.; Srour, Edward F.; Bruzzaniti, Angela; Fuchs, Robyn K.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineC-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out (c-Mpl(-/-) mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl(-/-) mice have a higher bone mass than WT controls. Using c-Mpl(-/-) mice we investigated the basis for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results in a net gain in bone volume with increases in OBs and OCs. In vitro, a higher percentage of c-Mpl(-/-) OBs were in active phases of the cell cycle, leading to an increased number of OBs. No difference in OB differentiation was observed in vitro as examined by real-time PCR and functional assays. In co-culture systems, which allow for the interaction between OBs and OC progenitors, c-Mpl(-/-) OBs enhanced osteoclastogenesis. Two of the major signaling pathways by which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were unaffected in c-Mpl(-/-) OBs. These data provide new findings for the role of MKs and c-Mpl expression in bone and may provide insight into the homeostatic regulation of bone mass as well as bone loss diseases such as osteoporosis.Item Foreword: Calcified Tissue International and Musculoskeletal Research Special Issue: Bone Material Properties and Skeletal Fragility.(Springer, 2015-09) Burr, David B.; Allen, Matthew R.; Department of Anatomy & Cell Biology, IU School of MedicineItem Lnk Deficiency Leads to TPO-Mediated Osteoclastogenesis and Increased Bone Mass Phenotype(Wiley, 2017-08) Olivos III, David J.; Alvarez, Marta; Cheng, Ying-Hua; Hooker, R. Adam; Ciovacco, Wendy A.; Bethel, Monique; McGough, Haley; Yim, Christopher; Chitteti, Brahmananda R.; Eleniste, Pierre P.; Horowitz, Mark C.; Srour, Edward F.; Bruzzaniti, Angela; Fuchs, Robyn K.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineThe Lnk adapter protein negatively regulates the signaling of thrombopoietin (TPO), the main megakaryocyte (MK) growth factor. Lnk-deficient (-/-) mice have increased TPO signaling and increased MK number. Interestingly, several mouse models exist in which increased MK number leads to a high bone mass phenotype. Here we report the bone phenotype of these mice. MicroCT and static histomorphometric analyses at 20 weeks showed the distal femur of Lnk-/- mice to have significantly higher bone volume fraction and trabecular number compared to wild-type (WT) mice. Notably, despite a significant increase in the number of osteoclasts (OC), and decreased bone formation rate in Lnk-/- mice compared to WT mice, Lnk-/- mice demonstrated a 2.5-fold greater BV/TV suggesting impaired OC function in vivo. Additionally, Lnk-/- mouse femurs exhibited non-significant increases in mid-shaft cross-sectional area, yet increased periosteal BFR compared to WT femurs was observed. Lnk-/- femurs also had non-significant increases in polar moment of inertia and decreased cortical bone area and thickness, resulting in reduced bone stiffness, modulus, and strength compared to WT femurs. Of note, Lnk is expressed by OC lineage cells and when Lnk-/- OC progenitors are cultured in the presence of TPO, significantly more OC are observed than in WT cultures. Lnk is also expressed in osteoblast (OB) cells and in vitro reduced alkaline phosphatase activity was observed in Lnk-/- cultures. These data suggest that both direct effects on OB and OC as well as indirect effects of MK in regulating OB contributes to the observed high bone mass. J. Cell. Biochem. 118: 2231-2240, 2017.Item Long-term Musculoskeletal Consequences of Chemotherapy in Pediatric Mice(Oxford University Press, 2024-03-07) Huot, Joshua R.; Livingston, Patrick D.; Pin, Fabrizio; Thomas, Connor R.; Jamnick, Nicholas A.; Callaway, Chandler S.; Bonetto, Andrea; Anatomy, Cell Biology and Physiology, School of MedicineThanks to recent progress in cancer research, most children treated for cancer survive into adulthood. Nevertheless, the long-term consequences of anticancer agents are understudied, especially in the pediatric population. We and others have shown that routinely administered chemotherapeutics drive musculoskeletal alterations, which contribute to increased treatment-related toxicity and long-term morbidity. Yet, the nature and scope of these enduring musculoskeletal defects following anticancer treatments and whether they can potentially impact growth and quality of life in young individuals remain to be elucidated. Here, we aimed at investigating the persistent musculoskeletal consequences of chemotherapy in young (pediatric) mice. Four-week-old male mice were administered a combination of 5-FU, leucovorin, irinotecan (a.k.a., Folfiri) or the vehicle for up to 5 wk. At time of sacrifice, skeletal muscle, bones, and other tissues were collected, processed, and stored for further analyses. In another set of experiments, chemotherapy-treated mice were monitored for up to 4 wk after cessation of treatment. Overall, the growth rate was significantly slower in the chemotherapy-treated animals, resulting in diminished lean and fat mass, as well as significantly smaller skeletal muscles. Interestingly, 4 wk after cessation of the treatment, the animals exposed to chemotherapy showed persistent musculoskeletal defects, including muscle innervation deficits and abnormal mitochondrial homeostasis. Altogether, our data support that anticancer treatments may lead to long-lasting musculoskeletal complications in actively growing pediatric mice and support the need for further studies to determine the mechanisms responsible for these complications, so that new therapies to prevent or diminish chemotherapy-related toxicities can be identified.Item Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease(Springer, 2023) Karnik, Sonali J.; Nazzal, Murad K.; Kacena, Melissa A.; Bruzzaniti, Angela; Orthopaedic Surgery, School of MedicineThe bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.Item New Insights Into the Local and Systemic Functions of Sclerostin: Regulation of Quiescent Bone Lining Cells and Beige Adipogenesis in Peripheral Fat Depots(Wiley, 2017-05) Delgado-Calle, Jesus; Bellido, Teresita; Anatomy and Cell Biology, School of MedicineItem Osteoclast-mediated bone loss observed in a COVID-19 mouse model(Elsevier, 2022-01) Awosanya, Olatundun D.; Dalloul, Christopher E.; Blosser, Rachel J.; Dadwal, Ushashi C.; Carozza, Mariel; Boschen, Karen; Klemsz, Michael J.; Johnston, Nancy A.; Bruzzaniti, Angela; Robinson, Christopher M.; Srour, Edward F.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineThe consequences of SARS-CoV-2 infection on the musculoskeletal system represent a dangerous knowledge gap. Aging patients are at added risk for SARS-CoV-2 infection; therefore, a greater understanding of the resulting musculoskeletal sequelae of SARS-CoV-2 infection may help guide clinical strategies. This study examined fundamental bone parameters among mice treated with escalating viral loads. Male C57BL/6J (WT, n = 17) and B6.Cg-Tg(K18-ACE2)2Prlmn/J mice (K18-hACE2 transgenic mice, n = 21) expressing human ACE2 (TG) were divided into eight groups (n = 4-6/group) and subjected to intranasal dosing of 0, 1 × 103, 1 × 104, and 1 × 105 PFU (plaque forming units) of human SARS-CoV-2. Animal health was assessed daily by veterinary staff using established and validated scoring criteria (activity, posture, body condition scores and body weight). We report here that mock and WT infected mice were healthy and completed the study, surviving until 12-14 days post infection (dpi). In contrast, the TG mice infected with 1 × 105 PFU all experienced severe health declines that necessitated early euthanasia (6-7 dpi). For TG mice infected with 1 × 104 PFU, 2 mice were also euthanized after 7 dpi, while 3 mice showed signs of moderate disease at day 6 dpi, but recovered fully by day 11 dpi. Four of the 5 TG mice that were infected with 1 × 103 PFU remained healthy throughout the study. This suggests that our study mimics what is seen during human disease, where some patients develop severe disease resulting in death, while others have moderate to severe disease but recover, and others are asymptomatic. At necropsy, femurs were extracted and analyzed by μCT. No difference was found in μCT determined bone parameters among the WT groups. There was, however, a significant 24.4% decrease in trabecular bone volume fraction (p = 0.0009), 19.0% decrease in trabecular number (p = 0.004), 6.2% decrease in trabecular thickness (p = 0.04), and a 9.8% increase in trabecular separation (p = 0.04) among surviving TG mice receiving any viral load compared to non-infected controls. No differences in cortical bone parameters were detected. TRAP staining revealed surviving infected mice had a significant 64% increase in osteoclast number, a 27% increase in osteoclast surface, and a 38% increase in osteoclasts per bone surface. While more studies are needed to investigate the long-term consequences of SARS-CoV-2 infection on skeletal health, this study demonstrates a significant reduction in several bone parameters and corresponding robust increases in osteoclast number observed within 2 weeks post-infection in surviving asymptomatic and moderately affected mice.Item Overexpression of WNT16 Does Not Prevent Cortical Bone Loss Due to Glucocorticoid Treatment in Mice(American Society for Bone and Mineral Research, 2018-10-23) Alam, Imranul; Oakes, Dana K.; Reilly, Austin M.; Billingsley, Caylin; Sbeta, Shahed; Gerard‐O'Riley, Rita L.; Acton, Dena; Sato, Amy; Bellido, Teresita; Econs, Michael J.; Medicine, School of MedicineGlucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment.