- Browse by Subject
Browsing by Subject "Bonding"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Associations Between Social Network Characteristics and Brain Structure Among Older Adults(Wiley, 2024) Manchella, Mohit K.; Logan, Paige E.; Perry, Brea L.; Peng, Siyun; Risacher, Shannon L.; Saykin, Andrew J.; Apostolova, Liana G.; Neurology, School of MedicineIntroduction: Social connectedness is associated with slower cognitive decline among older adults. Recent research suggests that distinct aspects of social networks may have differential effects on cognitive resilience, but few studies analyze brain structure. Methods: This study includes 117 cognitively impaired and 59 unimpaired older adults. The effects of social network characteristics (bridging/bonding) on brain regions of interests were analyzed using linear regressions and voxel-wise multiple linear regressions of gray matter density. Results: Increased social bridging was associated with greater bilateral amygdala volume and insular thickness, and left frontal lobe thickness, putamen, and thalamic volumes. Increased social bonding was associated with greater bilateral medial orbitofrontal and caudal anterior cingulate thickness, as well as right frontal lobe thickness, putamen, and amygdala volumes. Discussion: The associations between social connectedness and brain structure vary depending on the types of social enrichment accessible through social networks, suggesting that psychosocial interventions could mitigate neurodegeneration. Highlights: Distinct forms of social capital are uniquely linked to gray matter density (GMD). Bridging is associated with preserved GMD in limbic system structures. Bonding is associated with preserved GMD in frontal lobe regions. Bridging is associated with increased brain reserve in sensory processing regions. Bonding is associated with increased brain reserve in regions of stress modulation.Item Chlorhexidine-modified nanotubes and their effects on the polymerization and bonding performance of a dental adhesive(Elsevier, 2020-05) Kalagi, Sara; Feitosa, Sabrina A.; Münchow, Eliseu A.; Martins, Victor M.; Karczewski, Ashley E.; Cook, N. Blaine; Diefenderfer, Kim; Eckert, George J.; Geraldeli, Saulo; Bottino, Marco C.; Cariology, Operative Dentistry and Dental Public Health, School of DentistryObjectives: The purpose of this study was to synthesize chlorhexidine (CHX)-encapsulated aluminosilicate clay nanotubes (Halloysite®, HNTs) and to incorporate them into the primer/adhesive components of an etch-and-rinse adhesive system (SBMP; Scotchbond Multipurpose, 3M ESPE) and to test their effects on degree of conversion, viscosity, immediate and long-term bonding to dentin. Methods: CHX-modified HNTs were synthesized using 10% or 20% CHX solutions. The primer and the adhesive components of SBMP were incorporated with 15wt.% of the CHX-encapsulated HNTs. Degree of conversion (DC) and viscosity analyses were performed to characterize the modified primers/adhesives. For bond strength testing, acid-etched dentin was treated with one of the following: SBMP (control); 0.2%CHX solution before SBMP; CHX-modified primers+SBMP adhesive; SBMP primer+CHX-modified adhesives; and SBMP primer+CHX-free HNT-modified adhesive. The microtensile bond strength test was performed after immediate (24h) and long-term (6 months) of water storage. Data were analyzed using ANOVA and Tukey (α=5%) and the Weibull analysis. Results: DC was greater for the CHX-free HNT-modified adhesive, whereas the other experimental adhesives showed similar DC as compared with the control. Primers were less viscous than the adhesives, without significant differences within the respective materials. At 24h, all groups showed similar bonding performance and structural reliability; whereas at the 6-month period, groups treated with the 0.2%CHX solution prior bonding or with the CHX-modified primers resulted in greater bond strength than the control and superior reliability. Significance: The modification of a primer or adhesive with CHX-encapsulated HNTs was an advantageous approach that did not impair the polymerization, viscosity and bonding performance of the materials, showing a promising long-term effect on resin-dentin bonds.