- Browse by Subject
Browsing by Subject "Blood biomarkers"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Bifactor Model of the Sport Concussion Assessment Tool Symptom Checklist: Replication and Invariance Across Time in the CARE Consortium Sample(Sage, 2020-09) Brett, Benjamin L.; Kramer, Mark D.; McCrea, Michael A.; Broglio, Steven P.; McAllister, Thomas; Nelson, Lindsay D.; Hazzard, Joseph B., Jr.; Kelly, Louise A.; Ortega, Justus; Port, Nicholas; Pasquina, Paul F.; Jackson, Jonathan; Cameron, Kenneth L.; Houston, Megan N.; Goldman, Joshua T.; Giza, Christopher; Buckley, Thomas; Clugston, James R.; Schmidt, Julianne D.; Feigenbaum, Luis A.; Eckner, James T.; Master, Christina L.; Collins, Michael W.; Kontos, Anthony P.; Chrisman, Sara P.D.; Duma, Stefan M.; Miles, Christopher M.; Susmarski, Adam; Psychiatry, School of MedicineBackground: Identifying separate dimensions of concussion symptoms may inform a precision medicine approach to treatment. It was previously reported that a bifactor model identified distinct acute postconcussion symptom dimensions. Purpose: To replicate previous findings of a bifactor structure of concussion symptoms in the Concussion Assessment Research and Education (CARE) Consortium sample, examine measurement invariance from pre- to postinjury, and evaluate whether factors are associated with other clinical and biomarker measures. Study design: Cohort study (Diagnosis); Level of evidence, 2. Methods: Collegiate athletes were prospectively evaluated using the Sport Concussion Assessment Tool-3 (SCAT-3) during preseason (N = 31,557); 2789 were followed at <6 hours and 24 to 48 hours after concussion. Item-level SCAT-3 ratings were analyzed using exploratory and confirmatory factor analyses. Bifactor and higher-order models were compared for their fit and interpretability. Measurement invariance tested the stability of the identified factor structure across time. The association between factors and criterion measures (clinical and blood-based markers of concussion severity, symptom duration) was evaluated. Results: The optimal structure for each time point was a 7-factor bifactor model: a General factor, on which all items loaded, and 6 specific factors-Vestibulo-ocular, Headache, Sensory, Fatigue, Cognitive, and Emotional. The model manifested strict invariance across the 2 postinjury time points but only configural invariance from baseline to postinjury. From <6 to 24-48 hours, some dimensions increased in severity (Sensory, Fatigue, Emotional), while others decreased (General, Headache, Vestibulo-ocular). The factors correlated with differing clinical and biomarker criterion measures and showed differing patterns of association with symptom duration at different time points. Conclusion: Bifactor modeling supported the predominant unidimensionality of concussion symptoms while revealing multidimensional properties, including a large dominant General factor and 6 independent factors: Headache, Vestibulo-ocular, Sensory, Cognitive, Fatigue, and Emotional. Unlike the widely used SCAT-3 symptom severity score, which declines gradually after injury, the bifactor model revealed separable symptom dimensions that have distinct trajectories in the acute postinjury period and different patterns of association with other markers of injury severity and outcome. Clinical relevance: The SCAT-3 total score remains a valuable, robust index of overall concussion symptom severity, and the specific factors identified may inform management strategies. Because some symptom dimensions continue to worsen in the first 24 to 48 hours after injury (ie, Sensory, Fatigue, Emotional), routine follow-up in this time frame may be valuable to ensure that symptoms are managed effectively.Item Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients(Mary Ann Liebert, 2021) DeKosky, Steven T.; Kochanek, Patrick M.; Valadka, Alex B.; Clark, Robert S. B.; Chou, Sherry H. Y.; Au, Alicia K.; Horvat, Christopher; Jha, Ruchira M.; Mannix, Rebekah; Wisniewski, Stephen R.; Wintermark, Max; Rowell, Susan E.; Welch, Robert D.; Lewis, Lawrence; House, Stacey; Tanzi, Rudolph E.; Smith, Darci R.; Vittor, Amy Y.; Denslow, Nancy D.; Davis, Michael D.; Glushakova, Olena Y.; Hayes, Ronald L.; Pediatrics, School of MedicineThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.Item Blood Biomarkers from Research Use to Clinical Practice: What Must Be Done? A Report from the EU/US CTAD Task Force(Springer, 2022) Angioni, D.; Delrieu, J.; Hansson, O.; Fillit, H.; Aisen, P.; Cummings, J.; Sim, J. R.; Braunstein, J. B.; Sabbagh, M.; Bittner, T.; Pontecorvo, M.; Bozeat, S.; Dage, J. L.; Largent, E.; Mattke, S.; Correa, O.; Gutierrez Robledo, L. M.; Baldivieso, V.; Willis, D. R.; Atri, A.; Bateman, R. J.; Ousset, P-J.; Vellas, B.; Weiner, M.; Neurology, School of MedicineTimely and accurate diagnosis of Alzheimer’s disease (AD) in clinical practice remains challenging. PET and CSF biomarkers are the most widely used biomarkers to aid diagnosis in clinical research but present limitations for clinical practice (i.e., cost, accessibility). Emerging blood-based markers have the potential to be accurate, cost-effective, and easily accessible for widespread clinical use, and could facilitate timely diagnosis. The EU/US CTAD Task Force met in May 2022 in a virtual meeting to discuss pathways to implementation of blood-based markers in clinical practice. Specifically, the CTAD Task Force assessed: the state-of-art for blood-based markers, the current use of blood-based markers in clinical trials, the potential use of blood-based markers in clinical practice, the current challenges with blood-based markers, and the next steps needed for broader adoption in clinical practice.Item Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231(BMC, 2021-12-04) Bayoumy, Sherif; Verberk, Inge M.W.; den Dulk, Ben; Hussainali, Zulaiga; Zwan, Marissa; van der Flier, Wiesje M.; Ashton, Nicholas J.; Zetterberg, Henrik; Blennow, Kaj; Vanbrabant, Jeroen; Stoops, Erik; Vanmechelen, Eugeen; Dage, Jeffrey L.; Teunissen, Charlotte E.; Neurology, School of MedicineIntroduction: Studies using different assays and technologies showed highly promising diagnostic value of plasma phosphorylated (P-)tau levels for Alzheimer's disease (AD). We aimed to compare six P-tau Simoa assays, including three P-tau181 (Eli Lilly, ADx, Quanterix), one P-tau217 (Eli Lilly), and two P-tau231 (ADx, Gothenburg). Methods: We studied the analytical (sensitivity, precision, parallelism, dilution linearity, and recovery) and clinical (40 AD dementia patients, age 66±8years, 50%F; 40 age- and sex-matched controls) performance of the assays. Results: All assays showed robust analytical performance, and particularly P-tau217 Eli Lilly; P-tau231 Gothenburg and all P-tau181 assays showed robust clinical performance to differentiate AD from controls, with AUCs 0.936-0.995 (P-tau231 ADx: AUC = 0.719). Results obtained with all P-tau181 assays, P-tau217 Eli Lilly assay, and P-tau231 Gothenburg assay strongly correlated (Spearman's rho > 0.86), while correlations with P-tau231 ADx results were moderate (rho < 0.65). Discussion: P-tau isoforms can be measured robustly by several novel high-sensitive Simoa assays.Item Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study(MDPI, 2021-04-28) Hendrix, James A.; Airey, David C.; Britton, Angela; Burke, Anna D.; Capone, George T.; Chavez, Ronelyn; Chen, Jacqueline; Chicoine, Brian; Costa, Alberto C.S.; Dage, Jeffrey L.; Doran, Eric; Esbensen, Anna; Evans, Casey L.; Faber, Kelley M.; Foroud, Tatiana M.; Hart, Sarah; Haugen, Kelsey; Head, Elizabeth; Hendrix, Suzanne; Hillerstrom, Hampus; Kishnani, Priya S.; Krell, Kavita; Ledesma, Duvia Lara; Lai, Florence; Lott, Ira; Ochoa-Lubinoff, Cesar; Mason, Jennifer; Nicodemus-Johnson, Jessie; Proctor, Nicholas Kyle; Pulsifer, Margaret B.; Revta, Carolyn; Rosas, H. Diana; Rosser, Tracie C.; Santoro, Stephanie; Schafer, Kim; Scheidemantel, Thomas; Schmitt, Frederick; Skotko, Brian G.; Stasko, Melissa R.; Talboy, Amy; Torres, Amy; Wilmes, Kristi; Woodward, Jason; Zimmer, Jennifer A.; Feldman, Howard H.; Mobley, William; Medical and Molecular Genetics, School of MedicineWith improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology.Item Detecting amyloid positivity in early Alzheimer’s disease using combinations of plasma Aβ42/Aβ40 and p-tau(Wiley, 2022-02) Janelidze, Shorena; Palmqvist, Sebastian; Leuzy, Antoine; Stomrud, Erik; Verberk, Inge M.W.; Zetterberg, Henrik; Ashton, Nicholas J.; Pesini, Pedro; Sarasa, Leticia; Allué, José Antonio; Teunissen, Charlotte E.; Dage, Jeffrey L.; Blennow, Kaj; Mattsson-Carlgren, Niklas; Hansson, Oskar; Neurology, School of MedicineIntroduction: We studied usefulness of combining blood amyloid beta (Aβ)42/Aβ40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain Aβ deposition in different stages of early Alzheimer's disease (AD). Methods: Plasma biomarkers were measured using mass spectrometry (Aβ42/Aβ40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). Results: In CU, a combination of plasma Aβ42/Aβ40 and p-tau217 detected abnormal brain Aβ status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or Aβ42/Aβ40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyapps.io/PredictABplasma/). Discussion: A combination of plasma Aβ42/Aβ40 and p-tau217 discriminated Aβ status with relatively high accuracy, whereas p-tau217 showed strongest associations with Aβ pathology in MCI but not in CU.Item Neuro-ophthalmologic and blood biomarker responses in ADHD following subconcussive head impacts: a case–control trial(Frontiers Media, 2023-11-22) Nowak, Madeleine K.; Kronenberger, William G.; Rettke, Devin; Ogbeide, Osamudiamen; Klemsz, Lillian M.; Quinn, Patrick D.; Mickleborough, Timothy D.; Newman, Sharlene D.; Kawata, Keisuke; Psychiatry, School of MedicineIntroduction: This clinical trial aimed to determine the influence of attention-deficit/hyperactivity disorder (ADHD) on neuro-ophthalmologic function and brain-derived blood biomarkers following acute subconcussive head impacts. Methods: The present trial consisted of age- and sex-matched samples with a ratio of 1:1 between two groups with a total sample size of 60 adults (age ± SD; 20.0 ± 1.8 years). Soccer players diagnosed with and medicated daily for ADHD were assigned into an ADHD group (n = 30). Soccer players without ADHD were assigned into a non-ADHD group (n = 30). Participants performed 10 soccer headers with a soccer ball projected at a velocity of 25mph. King-Devick test (KDT), near point of convergence (NPC), and serum levels of NF-L, tau, GFAP, and UCH-L1 were assessed at baseline (pre-heading) and at 2 h and 24 h post-heading. Results: There were no statistically significant group-by-time interactions in outcome measures. However, at baseline, the ADHD group exhibited lower neuro-ophthalmologic functions compared to the non-ADHD group (NPC: p = 0.019; KDT: p = 0.018), and persisted at 2 h-post (NPC: p = 0.007; KDT: p = 0.014) and 24 h-post heading (NPC: p = 0.001). NPC significantly worsened over time in both groups compared to baseline [ADHD: 2 h-post, 1.23 cm, 95%CI:(0.77, 1.69), p < 0.001; 24 h-post, 1.68 cm, 95%CI:(1.22, 2.13), p = 0.001; Non-ADHD: 2 h-post, 0.96 cm, 95%CI:(0.50, 1.42), p < 0.001; 24 h-post, 1.09 cm, 95%CI:(0.63, 1.55), p < 0.001]. Conversely, improvements in KDT time compared to baseline occurred at 2 h-post in the non-ADHD group [-1.32 s, 95%CI:(-2.55, -0.09), p = 0.04] and at 24 h-post in both groups [ADHD: -4.66 s, 95%CI:(-5.89, -3.43), p < 0.001; Non-ADHD: -3.46 s, 95%CI:(-4.69, -2.23), p < 0.001)]. There were no group-by-time interactions for GFAP as both groups exhibited increased levels at 2 h-post [ADHD: 7.75 pg./mL, 95%CI:(1.41, 14.10), p = 0.019; Non-ADHD: 7.91 pg./mL, 95%CI:(1.71, 14.14), p = 0.015)] that returned to baseline at 24 h-post. NF-L levels increased at 2 h-post heading in the ADHD group [0.45 pg./mL, 95%CI:(0.05, 0.86), p = 0.032], but no significant NF-L changes were observed in the non-ADHD group over time. Discussion: Ten soccer headers elevated GFAP levels and NPC impairment in both groups. However, persisting group difference in NPC, blunted KDT performance, and increased NF-L levels in the ADHD group suggest that ADHD may reduce neuro-ophthalmologic function and heighten axonal response to soccer headers.Item Plasma amyloid beta levels are associated with cerebral amyloid and tau deposition(Elsevier, 2019-07-26) Risacher, Shannon L.; Fandos, Noelia; Romero, Judith; Sherriff, Ian; Pesini, Pedro; Saykin, Andrew J.; Apostolova, Liana G.; Radiology and Imaging Sciences, School of MedicineIntroduction: We investigated the relationship of plasma amyloid beta (Aβ) with cerebral deposition of Aβ and tau on positron emission tomography (PET). Methods: Forty-four participants (18 cognitively normal older adults [CN], 10 mild cognitive impairment, 16 Alzheimer's disease [AD]) underwent amyloid PET and a blood draw. Free and total plasma Aβ40 and Aβ42 were assessed using a validated assay. Thirty-seven participants (17 CN, 8 mild cognitive impairment, 12 AD) also underwent a [18F]flortaucipir scan. Scans were preprocessed by standard techniques, and mean global and regional amyloid and tau values were extracted. Free Aβ42/Aβ40 (Aβ F42:F40) and total Aβ42/Aβ40 (Aβ T42:T40) were evaluated for differences by diagnosis and relation to PET Aβ positivity. Relationships between these measures and cerebral Aβ and tau on both regional and voxel-wise basis were also evaluated. Results: Lower Aβ T42:T40 was associated with diagnosis and PET Aβ positivity. Lower plasma Aβ T42:T40 ratios predicted cerebral Aβ positivity, both across the full sample and in CN only. Finally, lower plasma Aβ T42:T40 ratios were associated with increased cortical Aβ and tau in AD-related regions on both regional and voxel-wise analyses. Discussion: Plasma Aβ measures may be useful biomarkers for predicting cerebral Aβ and tau. Additional studies in larger samples are warranted.Item Plasma p-tau217 predicts in vivo brain pathology and cognition in autosomal dominant Alzheimer's disease(Wiley, 2023) Aguillon, David; Langella, Stephanie; Chen, Yinghua; Sanchez, Justin; Su, Yi; Vila-Castelar, Clara; Vasquez, Daniel; Zetterberg, Henrik; Hansson, Oskar; Dage, Jeffrey L.; Janelidze, Shorena; Chen, Kewei; Fox-Fuller, Joshua T.; Aduen, Paula; Martinez, Jairo E.; Garcia, Gloria; Baena, Ana; Guzman, Claudia; Johnson, Keith; Sperling, Reisa A.; Blennow, Kaj; Reiman, Eric M.; Lopera, Francisco; Quiroz, Yakeel T.; Neurology, School of MedicineIntroduction: Plasma-measured tau phosphorylated at threonine 217 (p-tau217) is a potential non-invasive biomarker of Alzheimer's disease (AD). We investigated whether plasma p-tau217 predicts subsequent cognition and positron emission tomography (PET) markers of pathology in autosomal dominant AD. Methods: We analyzed baseline levels of plasma p-tau217 and its associations with amyloid PET, tau PET, and word list delayed recall measured 7.61 years later in non-demented age- and education-matched presenilin-1 E280A carriers (n = 24) and non-carrier (n = 20) family members. Results: Carriers had higher plasma p-tau217 levels than non-carriers. Baseline plasma p-tau217 was associated with subsequent amyloid and tau PET pathology levels and cognitive function. Discussion: Our findings suggest that plasma p-tau217 predicts subsequent brain pathological burden and memory performance in presenilin-1 E280A carriers. These results provide support for plasma p-tau217 as a minimally invasive diagnostic and prognostic biomarker for AD, with potential utility in clinical practice and trials. Highlights: Non-demented presenilin-1 E280A carriers have higher plasma tau phosphorylated at threonine 217 (p-tau217) than do age-matched non-carriers. Higher baseline p-tau217 is associated with greater future amyloid positron emission tomography (PET) pathology burden. Higher baseline p-tau217 is associated with greater future tau PET pathology burden. Higher baseline p-tau217 is associated with worse future memory performance.Item Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease(American Society for Clinical Investigation, 2016-05-05) Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Ramadan, Abdulraouf; Zhang, Qing; Choi, Sung W.; Zhang, Peng; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir; Paczesny, Sophie; Department of Microbiology & Immunology, IU School of MedicineGastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA-transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA- transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT.