- Browse by Subject
Browsing by Subject "Blood"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Assessing Unequal Airborne Exposure to Lead Associated With Race in the USA(Wiley, 2023-07-24) Laidlaw, Mark A. S.; Mielke, Howard W.; Filippelli, Gabriel M.; Earth and Environmental Sciences, School of ScienceRecent research applied the United States Environmental Protection Agency's Chemical Speciation Network and Interagency Monitoring of Protected Visual Environments monitoring stations and observed that mean concentrations of atmospheric lead (Pb) in highly segregated counties are a factor of 5 higher than in well‐integrated counties and argument is made that regulation of existing airborne Pb emissions will reduce children's Pb exposure. We argue that one of the main sources of children's current Pb exposure is from resuspension of legacy Pb in soil dust and that the racial disparity of Pb exposure is associated with Pb‐contaminated community soils.Item Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities(PLOS (Public Library of Science), 2014-10-24) Gavish, Yoni; Kedem, Hadar; Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas; Department of Microbiology & Immunology, School of MedicineRelationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts.Item Bleeding the laboratory mouse: Not all methods are equal(Elsevier, 2016-02) Hoggatt, Jonathan; Hoggatt, Amber F.; Tate, Tiffany A.; Fortman, Jeffrey; Pelus, Louis M.; Microbiology and Immunology, School of MedicineThe laboratory mouse is the model most frequently used in hematologic studies and assessment of blood parameters across a broad range of disciplines. Often, analysis of blood occurs in a nonterminal manner. However, the small body size of the mouse limits collection based on volume, frequency, and accessible sites. Commonly used sites in the mouse include the retro-orbital sinus, facial vein, tail vein, saphenous vein, and heart. The method of blood acquisition varies considerably across laboratories and is often not reported in detail. In this study, we report significant alterations in blood parameters, particularly of total white blood cells, specific populations of dendritic cells and myeloid-derived suppressor cells, and hematopoietic progenitor cells, as a result of site and manner of sampling. Intriguingly, warming of mice prior to tail bleeding was found to significantly alter blood values. Our findings suggest that the same method should be used across an entire study, that mice should be warmed prior to tail bleeds to make levels uniform, and that accurate description of bleeding methods in publications should be provided to allow for interpretation of comparative reports and inter- and intralaboratory experimental variability.Item Blood-based biomarkers for Alzheimer's disease(EMBO Press, 2022) Leuzy, Antoine; Mattsson-Carlgren, Niklas; Palmqvist, Sebastian; Janelidze, Shorena; Dage, Jeffrey L.; Hansson, Oskar; Neurology, School of MedicineNeurodegenerative disorders such as Alzheimer's disease (AD) represent a mounting public health challenge. As these diseases are difficult to diagnose clinically, biomarkers of underlying pathophysiology are playing an ever‐increasing role in research, clinical trials, and in the clinical work‐up of patients. Though cerebrospinal fluid (CSF) and positron emission tomography (PET)‐based measures are available, their use is not widespread due to limitations, including high costs and perceived invasiveness. As a result of rapid advances in the development of ultra‐sensitive assays, the levels of pathological brain‐ and AD‐related proteins can now be measured in blood, with recent work showing promising results. Plasma P‐tau appears to be the best candidate marker during symptomatic AD (i.e., prodromal AD and AD dementia) and preclinical AD when combined with Aβ42/Aβ40. Though not AD‐specific, blood NfL appears promising for the detection of neurodegeneration and could potentially be used to detect the effects of disease‐modifying therapies. This review provides an overview of the progress achieved thus far using AD blood‐based biomarkers, highlighting key areas of application and unmet challenges.Item Constructal law of vascular trees for facilitation of flow(PLoS, 2014-12-31) Razavi, Mohammad S.; Shirani, Ebrahim; Salimpour, Mohammad Reza; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyDiverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel evolution parameter (Ev) is proposed to quantify the flow capacity of vascular structures. Ev is defined as the ratio of the flow conductance of an evolving structure (configuration with imperfection) to the flow conductance of structure with least imperfection. Attaining higher Ev enables the structure to expedite flow circulation with less energy dissipation. For both Newtonian and non-Newtonian fluids, the evolution parameter was developed as a function of geometrical shape factors in laminar and turbulent fully developed flows. It was found that the non-Newtonian or Newtonian behavior of fluid as well as flow behavior such as laminar or turbulent behavior affects the evolution parameter. Using measured vascular morphometric data of various organs and species, the evolution parameter was calculated. The evolution parameter of the tree structures in biological systems was found to be in the range of 0.95 to 1. The conclusion is that various organs in various species have high capacity to facilitate flow within their respective vascular structures.Item Dysregulated expression levels of APH1B in peripheral blood are associated with brain atrophy and amyloid-β deposition in Alzheimer's disease(BMC, 2021-11-03) Park, Young Ho; Pyun, Jung‑Min; Hodges, Angela; Jang, Jae‑Won; Bice, Paula J.; Kim, SangYun; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineBackground: The interaction between the brain and periphery might play a crucial role in the development of Alzheimer's disease (AD). Methods: Using blood transcriptomic profile data from two independent AD cohorts, we performed expression quantitative trait locus (cis-eQTL) analysis of 29 significant genetic loci from a recent large-scale genome-wide association study to investigate the effects of the AD genetic variants on gene expression levels and identify their potential target genes. We then performed differential gene expression analysis of identified AD target genes and linear regression analysis to evaluate the association of differentially expressed genes with neuroimaging biomarkers. Results: A cis-eQTL analysis identified and replicated significant associations in seven genes (APH1B, BIN1, FCER1G, GATS, MS4A6A, RABEP1, TRIM4). APH1B expression levels in the blood increased in AD and were associated with entorhinal cortical thickness and global cortical amyloid-β deposition. Conclusion: An integrative analysis of genetics, blood-based transcriptomic profiles, and imaging biomarkers suggests that APH1B expression levels in the blood might play a role in the pathogenesis of AD.Item Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene(Wiley, 2014-09) Ahmed, A. S. Ishtiaq; Bose, Gracelyn C.; Huang, Li; Azhar, Mohamad; Department of Pediatrics, Indiana University School of MedicineTransforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell-matrix remodeling, epithelial-mesenchymal transition, and wound healing in a highly context-dependent and tissue-specific manner. Tgfb2(-/-) mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2(βgeo) (knockout-first lacZ-tagged insertion) gene-trap allele and Tgfb2(flox) conditional allele. Tgfb2(βgeo/βgeo) or Tgfb2(βgeo/-) mice died at perinatal stage from the same congenital heart defects as Tgfb2(-/-) mice. β-galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2(βgeo) fetal tissue sections. Tgfb2(flox) mice were produced by crossing the Tgfb2(+/βgeo) mice with the FLPeR mice. Tgfb2(flox/-) mice were viable. Tgfb2 conditional knockout (Tgfb2(cko/-) ) fetuses were generated by crossing of Tgfb2(flox/-) mice with Tgfb2(+/-) ; EIIaCre mice. Systemic Tgfb2(cko/-) embryos developed cardiac defects which resembled the Tgfb2(βgeo/βgeo) , Tgfb2(βgeo/-) , and Tgfb2(-/-) fetuses. In conclusion, Tgfb2(βgeo) and Tgfb2(flox) mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesisItem Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research(Elsevier, 2015-05) O’Bryant, Sid E.; Gupta, Veer; Henriksen, Kim; Edwards, Melissa; Jeromin, Andreas; Lista, Simone; Bazenet, Chantal; Soares, Holly; Lovestone, Simon; Hampel, Harald; Montine, Thomas; Blennow, Kaj; Foroud, Tatiana; Carrillo, Maria; Graff-Radford, Neill; Laske, Christoph; Breteler, Monique; Shaw, Leslie; Trojanowski, John Q.; Schupf, Nicole; Rissman, Robert A.; Fagan, Anne M.; Oberoi, Pankaj; Umek, Robert; Weiner, Michael W.; Grammas, Paul; Posner, Holly; Martins, Ralph; Department of Medical & Molecular Genetics, IU School of MedicineThe lack of readily available biomarkers is a significant hindrance towards progressing to effective therapeutic and preventative strategies for Alzheimer’s disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field in order to foster cross-validation across cohorts and laboratories.Item Head-to-head comparison of leading blood tests for Alzheimer's disease pathology(Wiley, 2024) Schindler, Suzanne E.; Petersen, Kellen K.; Saef, Benjamin; Tosun, Duygu; Shaw, Leslie M.; Zetterberg, Henrik; Dage, Jeffrey L.; Ferber, Kyle; Triana-Baltzer, Gallen; Du-Cuny, Lei; Li, Yan; Coomaraswamy, Janaky; Baratta, Michael; Mordashova, Yulia; Saad, Ziad S.; Raunig, David L.; Ashton, Nicholas J.; Meyers, Emily A.; Rubel, Carrie E.; Rosenbaugh, Erin G.; Bannon, Anthony W.; Potter, William Z.; Neurology, School of MedicineIntroduction: Blood tests have the potential to improve the accuracy of Alzheimer's disease (AD) clinical diagnosis, which will enable greater access to AD-specific treatments. This study compared leading commercial blood tests for amyloid pathology and other AD-related outcomes. Methods: Plasma samples from the Alzheimer's Disease Neuroimaging Initiative were assayed with AD blood tests from C2N Diagnostics, Fujirebio Diagnostics, ALZPath, Janssen, Roche Diagnostics, and Quanterix. Outcomes measures were amyloid positron emission tomography (PET), tau PET, cortical thickness, and dementia severity. Logistic regression models assessed the classification accuracies of individual or combined plasma biomarkers for binarized outcomes, and Spearman correlations evaluated continuous relationships between individual plasma biomarkers and continuous outcomes. Results: Measures of plasma p-tau217, either individually or in combination with other plasma biomarkers, had the strongest relationships with all AD outcomes. Discussion: This study identified the plasma biomarker analytes and assays that most accurately classified amyloid pathology and other AD-related outcomes. Highlights: Plasma p-tau217 measures most accurately classified amyloid and tau status. Plasma Aβ42/Aβ40 had relatively low accuracy in classification of amyloid status. Plasma p-tau217 measures had higher correlations with cortical thickness than NfL. Correlations of plasma biomarkers with dementia symptoms were relatively low.