- Browse by Subject
Browsing by Subject "Blockchain"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item A trustless architecture of blockchain-enabled metaverse(Elsevier, 2023-03) Xu, Minghui; Guo, Yihao; Hu, Qin; Xiong, Zehui; Yu, Dongxiao; Cheng, Xuizhen; Computer and Information Science, School of ScienceMetaverse has rekindled human beings’ desire to further break space-time barriers by fusing the virtual and real worlds. However, security and privacy threats hinder us from building a utopia. A metaverse embraces various techniques, while at the same time inheriting their pitfalls and thus exposing large attack surfaces. Blockchain, proposed in 2008, was regarded as a key building block of metaverses. it enables transparent and trusted computing environments using tamper-resistant decentralized ledgers. Currently, blockchain supports Decentralized Finance (DeFi) and Non-fungible Tokens (NFT) for metaverses. However, the power of a blockchain has not been sufficiently exploited. In this article, we propose a novel trustless architecture of blockchain-enabled metaverse, aiming to provide efficient resource integration and allocation by consolidating hardware and software components. To realize our design objectives, we provide an On-Demand Trusted Computing Environment (OTCE) technique based on local trust evaluation. Specifically, the architecture adopts a hypergraph to represent a metaverse, in which each hyperedge links a group of users with certain relationship. Then the trust level of each user group can be evaluated based on graph analytics techniques. Based on the trust value, each group can determine its security plan on demand, free from interference by irrelevant nodes. Besides, OTCEs enable large-scale and flexible application environments (sandboxes) while preserving a strong security guarantee.Item A Conceptual Framework for Distributed Software Quality Network(2019-08) Patil, Anushka H.; Hill, James H.; Raje, Rajeev R.; Tuceryan, MihranThe advancement in technology has revolutionized the role of software in recent years. Software usage is practically found in all areas of the industry and has become a prime factor in the overall working of the companies. Simultaneously with an increase in the utilization of software, the software quality assurance parameters have become more crucial and complex. Currently the quality measurement approaches, standards, and models that are applied in the software industry are extremely divergent. Many a time the correct approach will wind up to be a combination of di erent concepts and techniques from di erent software assurance approaches [1]. Thus, having a platform that provides a single workspace for incorporating multiple software quality assurance approaches will ease the overall software quality process. In this thesis we have proposed a theoretical framework for distributed software quality assurance, which will be able to continuously monitor a source code repository; create a snapshot of the system for a given commit (both past and present); the snapshot can be used to create a multi-granular blockchain of the system and its metrics (i.e.,metadata) which we believe will let the tool developers and vendors participate continuously in assuring quality and security of systems and in the process be accessible when required while being rewarded for their services.Item Developing a PV and Energy Storage Sizing Methodology for Off-Grid Communities(2018-12) Vance, David M.; Razban, Ali; Weissbach, Robert; Schubert, PeterCombining rooftop solar with energy storage for off-grid residential operation is restrictively expensive. Historically, operating off-grid requires an 'isolated self-consumption' operating strategy where any excess generation is wasted and to ensure reliability you must install costly, polluting generators or a large amount of energy storage. With the advent of Blockchain technology residents can come together and establish transactive microgrids which have two possible operating strategies: Centralized Energy Sharing (CES) and Interconnected Energy Sharing (IES). The CES strategy proposes that all systems combine their photovoltaic (PV) generation and energy storage systems (ESS) to meet their loads. IES strategy establishes an energy trading system between stand-alone systems which allows buying energy when battery capacity is empty and selling energy when battery capacity is full. Transactive microgrids have been investigated analytically by several sources, none of which consider year-round off-grid operation. A simulation tool was developed through MATLAB for comparing the three operating strategies: isolated self-consumption, CES, and IES. This simulation tool could easily be incorporated into existing software such as HOMER. The effect of several variables on total cost was tested including interconnection type, initial charge, load variability, starting month, number of stand-alone systems, geographic location, and required reliability. It was found that the CES strategy improves initial cost by 7\% to 10\% compared to the baseline (isolated self-consumption) and IES cases in every simulation. The IES case consistently saved money compared to the baseline, just by a very small amount (less than 1\%). Initial charge was investigated for March, July, and November and was only found to have an effect in November. More research should be done to show the effect of initial charge for every month of the year. Load variability had inconsistent results between the two geographic locations studied, Indianapolis and San Antonio. This result would be improved with an improved load simulation which includes peak shifting. The number of systems did not have a demonstrable effect, giving the same cost whether there were 2 systems or 50 involved in the trading strategies. It may be that only one other system is necessary to receive the benefits from a transactive microgrid. Geographic locations studied (Indianapolis, Indiana; Phoenix, Arizona; Little Rock, Arkansas; and Erie, Pennsylvania) showed a large effect on the total cost with Phoenix being considerably cheaper than any other location and Erie having the highest cost. This result was expected due to each geographic location's load and solar radiation profiles. Required reliability showed a consistent and predictable effect with cost going down as the requirement relaxed and more hours of outage were allowed. In order to accomplish off-grid operation with favorable economics it is likely that a system will need to reduce its reliability requirement, adopt energy saving consumption habits, choose a favorable geographic location, and either establish a transactive microgrid or include secondary energy generation and/or storage.Item A hybrid peer-to-peer framework for supply chain visibility(2017) Li, Zhijie; Ben Miled, ZinaCurrent supply chain information systems are transaction-based and suffer from lack of real-time transparency. Furthermore, they are often centralized and therefore cannot adequately scale to include a large number of small and medium size companies. This thesis presents a hybrid peer-to-peer supply chain physical distribution framework (HP3D) that addresses these increasingly critical gaps in a global market. HP3D leverages the advantages of hybrid networks through flexible peers and a light-weight index server in order to share supply chain physical distribution information in pseudo real-time among stakeholders. The architecture of HP3D consists of a hierarchy of dynamic sub-networks that evolve based on market demands and digitize the transfer of goods between suppliers and customers. These sub-networks are created on demand, emulate the end-to-end movement of the shipment and terminate when the delivery of goods is completed. A variation of blockchain technology is also proposed in order to increase the security level of the proposed framework.Item Machine-Learning-Enhanced Blockchain Consensus With Transaction Prioritization for Smart Cities(IEEE, 2022-04-15) Sanghami, S. Valli; Lee, John J.; Hu, Qin; Electrical and Computer Engineering, School of Engineering and TechnologyIn the given technology-driven era, smart cities are the next frontier of technology, and these smart cities aim to improve the quality of people’s lives. In this article, we introduce such future Internet of Things (IoT)-based smart cities that leverage blockchain technology. Particularly, when there are multiple parties involved, blockchain helps in improving the security and transparency of the system in an efficient manner. However, if a current fee-based or first-come–first-serve-based processing is used, emergency events may get delayed and even threaten people’s lives. Thus, there is a need for transaction prioritization based on the priority of information and a dynamic block creation mechanism for efficient data recording and faster event response. Also, our system focuses on the consortium blockchain maintained by a group of members working across different organizations to provide more efficiency. The leader election procedure in such a consortium blockchain becomes more important for the transaction prioritization process to take place honestly. Hence, in our proposed consensus protocol, we deploy a machine-learning (ML) algorithm to achieve efficient leader election, based on which a novel dynamic block creation algorithm is designed. Also, to ensure the honest block generation behavior of the leader, a peer-prediction-based verification mechanism is proposed. Both security analysis and simulation experiments are carried out to demonstrate the robustness, accuracy, and efficiency of our proposed scheme.Item Proof of Federated Learning: A Novel Energy-Recycling Consensus Algorithm(IEEE Xplore, 2021-08) Qu, Xidi; Wang, Shengling; Hu, Qin; Cheng, Xiuzhen; Computer and Information Science, School of ScienceProof of work (PoW), the most popular consensus mechanism for blockchain, requires ridiculously large amounts of energy but without any useful outcome beyond determining accounting rights among miners. To tackle the drawback of PoW, we propose a novel energy-recycling consensus algorithm, namely proof of federated learning (PoFL), where the energy originally wasted to solve difficult but meaningless puzzles in PoW is reinvested to federated learning. Federated learning and pooled-mining, a trend of PoW, have a natural fit in terms of organization structure. However, the separation between the data usufruct and ownership in blockchain lead to data privacy leakage in model training and verification, deviating from the original intention of federal learning. To address the challenge, a reverse game-based data trading mechanism and a privacy-preserving model verification mechanism are proposed. The former can guard against training data leakage while the latter verifies the accuracy of a trained model with privacy preservation of the task requester's test data as well as the pool's submitted model. To the best of our knowledge, our article is the first work to employ federal learning as the proof of work for blockchain. Extensive simulations based on synthetic and real-world data demonstrate the effectiveness and efficiency of our proposed mechanisms.Item Public Participation Consortium Blockchain for Smart City Governance(IEEE Xplore, 2022) Bai, Yuhao; Hu, Qin; Seo, Seung-Hyun; Kang, Kyubyung; Lee, John J.; Computer and Information Science, School of ScienceSmart cities have become a trend with improved efficiency, resilience, and sustainability, providing citizens with high quality of life. With the increasing demand for a more participatory and bottom–up governance approach, citizens play an active role in the process of policy making, revolutionizing the management of smart cities. In the example of urban infrastructure maintenance, the public participation demand is more remarkable as the infrastructure condition is closely related to their daily life. Although blockchain has been widely explored to benefit data collection and processing in smart city governance, public engagement remains a challenge. In this article, we propose a novel public participation consortium blockchain system for infrastructure maintenance that is expected to encourage citizens to actively participate in the decision-making process and enable them to witness all administrative procedures in a real-time manner. To that aim, we introduced a hybrid blockchain architecture to involve a verifier group, which is randomly and dynamically selected from the public citizens, to verify the transaction. In particular, we devised a private-prior peer-prediction-based truthful verification mechanism to tackle the collusion attacks from public verifiers. Then, we specified a Stackelberg-game-based incentive mechanism for encouraging public participation. Finally, we conducted extensive simulations to reveal the properties and performances of our proposed blockchain system, which indicates its superiority over other variations.Item Trustworthy and Efficient Blockchain-based E-commerce Model(2024-08) Shankar Kumar, Valli Sanghami; Lee, John; King, Brian; Kim, Dongsoo; Hu, QinAmidst the rising popularity of digital marketplaces, addressing issues such as non- payment/non-delivery crimes, centralization risks, hacking threats, and the complexity of ownership transfers has become imperative. Many existing studies exploring blockchain technology in digital marketplaces and asset management merely touch upon various application scenarios without establishing a unified platform that ensures trustworthiness and efficiency across the product life cycle. In this thesis, we focus on designing a reliable and efficient e-commerce model to trade various assets. To enhance customer engagement through consensus, we utilize the XGBoost algorithm to identify loyal nodes from the platform entities pool. Alongside appointed nodes, these loyal nodes actively participate in the consensus process. The consensus algorithm guarantees that all involved nodes reach an agreement on the blockchain’s current state. We introduce a novel consensus mechanism named Modified- Practical Byzantine Fault Tolerance (M-PBFT), derived from the Practical Byzantine Fault Tolerance (PBFT) protocol to minimize communication overhead and improve overall efficiency. The modifications primarily target the leader election process and the communication protocols between leader and follower nodes within the PBFT consensus framework. In the domain of tangible assets, our primary objective is to elevate trust among various stakeholders and bolster the reputation of sellers. As a result, we aim to validate secondhand products and their descriptions provided by the sellers before the secondhand products are exchanged. This validation process also holds various entities accountable for their actions. We employ validators based on their location and qualifications to validate the products’ descriptions and generate validation certificates for the products, which are then securely recorded on the blockchain. To incentivize the participation of validator nodes and up- hold honest validation of product quality, we introduce an incentive mechanism leveraging Stackelberg game theory. On the other hand, for optimizing intangible assets management, we employ Non-Fungible Tokens (NFT) technology to tokenize these assets. This approach enhances traceability of ownership, transactions, and historical data, while also automating processes like dividend distributions, royalty payments, and ownership transfers through smart contracts. Initially, sellers mint NFTs and utilize the InterPlanetary File System (IPFS) to store the files related to NFTs, NFT metadata, or both since IPFS provides resilience and decentralized storage solutions to our network. The data stored in IPFS is encrypted for security purposes. Further, to aid sellers in pricing their NFTs efficiently, we employ the Stackelberg mechanism. Furthermore, to achieve finer access control in NFTs containing sensitive data and increase sellers’ profits, we propose a Popularity-based Adaptive NFT Management Scheme (PANMS) utilizing Reinforcement Learning (RL). To facilitate prompt and effective asset sales, we design a smart contract-powered auction mechanism. Also, to enhance data recording and event response efficiency, we introduce a weighted L-H index algorithm and transaction prioritization features in the network. The weighted L-H index algorithm determines efficient nodes to broadcast transactions. Transaction prioritization prioritizes certain transactions such as payments, verdicts during conflicts between sellers and validators, and validation reports to improve the efficiency of the platform. Simulation experiments are conducted to demonstrate the accuracy and efficiency of our proposed schemes.