- Browse by Subject
Browsing by Subject "Birdcage"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Electromagnetic Field Stimulation Therapy for Alzheimer’s Disease(Wolters Kluwer, 2024) Perez, Felipe P.; Morisaki, Jorge; Kanakri, Haitham; Rizkalla, Maher; Medicine, School of MedicineAlzheimer's disease (AD) is the most common neurodegenerative dementia worldwide. AD is a multifactorial disease that causes a progressive decline in memory and function precipitated by toxic beta-amyloid (Aβ) proteins, a key player in AD pathology. In 2022, 6.5 million Americans lived with AD, costing the nation $321billion. The standard of care for AD treatment includes acetylcholinesterase inhibitors (AchEIs), NMDA receptor antagonists, and monoclonal antibodies (mAbs). However, these methods are either: 1) ineffective in improving cognition, 2) unable to change disease progression, 3) limited in the number of therapeutic targets, 4) prone to cause severe side effects (brain swelling, microhemorrhages with mAb, and bradycardia and syncope with AchEIs), 5) unable to effectively cross the blood-brain barrier, and 6) lack of understanding of the aging process on the disease. mAbs are available to lower Aβ, but the difficulties of reducing the levels of the toxic Aβ proteins in the brain without triggering brain swelling or microhemorrhages associated with mAbs make the risk-benefit profile of mAbs unclear. A novel multitarget, effective, and safe non-invasive approach utilizing Repeated Electromagnetic Field Stimulation (REMFS) lowers Aβ levels in human neurons and memory areas, prevents neuronal death, stops disease progression, and improves memory without causing brain edema or bleeds in AD mice. This REMFS treatment has not been developed for humans because current EMF devices have poor penetration depth and inhomogeneous E-field distribution in the brain. Here, we discussed the biology of these effects in neurons and the design of optimal devices to treat AD.Item Numerical Analysis and Design of an EMF Birdcage Wearable Device for the Treatment of Alzheimer’s Disease: A Feasibility Study(Scientific Research Publishing, 2022) Perez, Felipe P.; Arvidson, David Michael; Taylor, Tyler Phoenix; Rahmani, Maryam; Rizkalla, Maher; Medicine, School of MedicineIn this study, we performed a numerical analysis of a novel EMF Birdcage wearable device for the treatment of Alzheimer's disease (AD). We designed the new device to generate and radiate a frequency of 64 MHz and a specific absorption rate (SAR) of 0.6 W/kg to a simulated human brain tissue. We determined these parameters from our experimental studies on primary human brain cultures at the Indiana University School of Medicine (IUSM). We found that this frequency and SAR decreased the toxic Aβ levels in the cell cultures. The frequency of 64 MHZ has good skin depth penetration, which will easily pass through the various head layers, including hair, skin, fat, dura, the cerebrospinal (CSF), and grey matter, and reach deeply into the brain tissues. The SAR of 0.6 W/kg was achieved with lower power input and energy, decreasing the probability of thermal injury. Therefore, these parameters enhance the safety of these potential treatments. This Birdcage device emulates a small-scale MRI machine, producing the same 64 MHz frequency at much lower operating input power. In this work, we utilized a high-frequency simulation system (HFSS/EMPro) software to produce the birdcage structure for the required EMF parameters. The 64 MHz radiating frequency produced the scattering S11 parameter of -15 dbs. We obtained a SAR of 0.6 W/kg when an input power of 100 W was applied. The coil dimensions were found to be near 15 cm in height and 22 cm in diameter, which fits in wearable systems. We found that the distribution of the electric field and SAR radiate homogeneously over the simulated human head with good penetration into the brain, which proves to be an appropriate potential therapeutic strategy for Alzheimer's disease.