- Browse by Subject
Browsing by Subject "Biomedical image processing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Predicting melanoma survival and metastasis with interpretable histopathological features and machine learning models(Frontiers Media, 2023-01-06) Couetil, Justin; Liu, Ziyu; Huang, Kun; Zhang, Jie; Alomari, Ahmed K.; Medical and Molecular Genetics, School of MedicineIntroduction: Melanoma is the fifth most common cancer in US, and the incidence is increasing 1.4% annually. The overall survival rate for early-stage disease is 99.4%. However, melanoma can recur years later (in the same region of the body or as distant metastasis), and results in a dramatically lower survival rate. Currently there is no reliable method to predict tumor recurrence and metastasis on early primary tumor histological images. Methods: To identify rapid, accurate, and cost-effective predictors of metastasis and survival, in this work, we applied various interpretable machine learning approaches to analyze melanoma histopathological H&E images. The result is a set of image features that can help clinicians identify high-risk-of-metastasis patients for increased clinical follow-up and precision treatment. We use simple models (i.e., logarithmic classification and KNN) and "human-interpretable" measures of cell morphology and tissue architecture (e.g., cell size, staining intensity, and cell density) to predict the melanoma survival on public and local Stage I-III cohorts as well as the metastasis risk on a local cohort. Results: We use penalized survival regression to limit features available to downstream classifiers and investigate the utility of convolutional neural networks in isolating tumor regions to focus morphology extraction on only the tumor region. This approach allows us to predict survival and metastasis with a maximum F1 score of 0.72 and 0.73, respectively, and to visualize several high-risk cell morphologies. Discussion: This lays the foundation for future work, which will focus on using our interpretable pipeline to predict metastasis in Stage I & II melanoma.Item Understanding metric-related pitfalls in image analysis validation(ArXiv, 2023-09-25) Reinke, Annika; Tizabi, Minu D.; Baumgartner, Michael; Eisenmann, Matthias; Heckmann-Nötzel, Doreen; Kavur, A. Emre; Rädsch, Tim; Sudre, Carole H.; Acion, Laura; Antonelli, Michela; Arbel, Tal; Bakas, Spyridon; Benis, Arriel; Blaschko, Matthew B.; Buettner, Florian; Cardoso, M. Jorge; Cheplygina, Veronika; Chen, Jianxu; Christodoulou, Evangelia; Cimini, Beth A.; Collins, Gary S.; Farahani, Keyvan; Ferrer, Luciana; Galdran, Adrian; Van Ginneken, Bram; Glocker, Ben; Godau, Patrick; Haase, Robert; Hashimoto, Daniel A.; Hoffman, Michael M.; Huisman, Merel; Isensee, Fabian; Jannin, Pierre; Kahn, Charles E.; Kainmueller, Dagmar; Kainz, Bernhard; Karargyris, Alexandros; Karthikesalingam, Alan; Kenngott, Hannes; Kleesiek, Jens; Kofler, Florian; Kooi, Thijs; Kopp-Schneider, Annette; Kozubek, Michal; Kreshuk, Anna; Kurc, Tahsin; Landman, Bennett A.; Litjens, Geert; Madani, Amin; Maier-Hein, Klaus; Martel, Anne L.; Mattson, Peter; Meijering, Erik; Menze, Bjoern; Moons, Karel G. M.; Müller, Henning; Nichyporuk, Brennan; Nickel, Felix; Petersen, Jens; Rafelski, Susanne M.; Rajpoot, Nasir; Reyes, Mauricio; Riegler, Michael A.; Rieke, Nicola; Saez-Rodriguez, Julio; Sánchez, Clara I.; Shetty, Shravya; Summers, Ronald M.; Taha, Abdel A.; Tiulpin, Aleksei; Tsaftaris, Sotirios A.; Van Calster, Ben; Varoquaux, Gaël; Yaniv, Ziv R.; Jäger, Paul F.; Maier-Hein, Lena; Pathology and Laboratory Medicine, School of MedicineValidation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.