- Browse by Subject
Browsing by Subject "Biological tissues"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness(American Society of Mechanical Engineers, 2019-02) Zhang, Wenwu; Gunst, Susan J.; Cellular and Integrative Physiology, School of MedicineThe smooth muscle of the airways is exposed to continuously changing mechanical forces during normal breathing. The mechanical oscillations that occur during breathing have profound effects on airway tone and airway responsiveness both in experimental animals and humans in vivo and in isolated airway tissues in vitro. Experimental evidence suggests that alterations in the contractile and mechanical properties of airway smooth muscle tissues caused by mechanical perturbations result from adaptive changes in the organization of the cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a dynamic structure that undergoes rapid reorganization in response to external mechanical and pharmacologic stimuli. Contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins into large macromolecular signaling complexes (adhesomes) that undergo activation to mediate the polymerization and reorganization of a submembranous network of actin filaments at the cortex of the cell. Cortical actin polymerization is catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, which are activated by pathways regulated by paxillin and the small GTPase, cdc42. These processes create a strong and rigid cytoskeletal framework that may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. This model for the regulation of airway smooth muscle function can provide novel perspectives to explain the normal physiologic behavior of the airways and pathophysiologic properties of the airways in asthma.Item Quantifiable Soft Tissue Manipulation (QSTM™) – A novel modality to improve clinical manual therapy with objective metrics(IEEE Xplore, 2021-11) Bhattacharjee, Abhinaba; Chien, Stanley Y. P.; Anwar, Sohel; Loghmani, Mary. T.; Physical Therapy, School of Health & Human SciencesSoft Tissue Manipulation (STM), a form of mechanotherapy, offers a clinical modality to examine and treat Neuromusculoskeletal (NMS) pain disorders and dysfunction. The, current STM practice is mostly subjective and reliant on anecdotal patient feedback and lacks quantification with objective metrics. This paper proposes Quantifiable Soft Tissue Manipulation (QSTM™), a sensor based computerized technological advancement in Soft tissue examination and treatment enabling new standard of practice in manual therapy. This novel medical device technology aims to produce optimum STM prescriptions using ergonomic, portable, handheld medical tools with specially contoured tips designed to palpate and assess tissue anomalies of specific musculoskeletal conditions. QSTM™ captures three–dimensional forces and motion of the mechatronic handheld tools to quantify STM treatment parameters, such as (resultant force, force application angle, rate, direction, and treatment time). Clinical practice using QSTM™ facilitates real-time visual feedback of treatment metrics and subsequent treatment documentation for comparison and analysis on a Windows based computer software (Q-Ware©). Pre-clinical testing using the QSTM™ medical device system clearly identifies inconsistencies among practitioners and distinguishes STM practice variabilities. Thus, QSTM™ is an apt tool for soft tissue treatment assessment, analysis, and individualized prescriptions for targeted STM dosing and commercialization.