- Browse by Subject
Browsing by Subject "Biodegradation"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item DNA degradation and repair in Escherichia coli following UV irradiation/(1977) Fong, Kenneth Shui-yuenItem Engineering of Injectable Antibiotic-laden Fibrous Microparticles Gelatin Methacryloyl Hydrogel for Endodontic Infection Ablation(MDPI, 2022-01-16) Ribeiro, Juliana S.; Münchow, Eliseu A.; Bordini, Ester A. F.; Rodrigues, Nathalie S.; Dubey, Nileshkumar; Sasaki, Hajime; Fenno, John C.; Schwendeman, Steven; Bottino, Marco C.; Biomedical and Applied Sciences, School of DentistryThis study aimed at engineering cytocompatible and injectable antibiotic-laden fibrous microparticles gelatin methacryloyl (GelMA) hydrogels for endodontic infection ablation. Clindamycin (CLIN) or metronidazole (MET) was added to a polymer solution and electrospun into fibrous mats, which were processed via cryomilling to obtain CLIN- or MET-laden fibrous microparticles. Then, GelMA was modified with CLIN- or MET-laden microparticles or by using equal amounts of each set of fibrous microparticles. Morphological characterization of electrospun fibers and cryomilled particles was performed via scanning electron microscopy (SEM). The experimental hydrogels were further examined for swelling, degradation, and toxicity to dental stem cells, as well as antimicrobial action against endodontic pathogens (agar diffusion) and biofilm inhibition, evaluated both quantitatively (CFU/mL) and qualitatively via confocal laser scanning microscopy (CLSM) and SEM. Data were analyzed using ANOVA and Tukey's test (α = 0.05). The modification of GelMA with antibiotic-laden fibrous microparticles increased the hydrogel swelling ratio and degradation rate. Cell viability was slightly reduced, although without any significant toxicity (cell viability > 50%). All hydrogels containing antibiotic-laden fibrous microparticles displayed antibiofilm effects, with the dentin substrate showing nearly complete elimination of viable bacteria. Altogether, our findings suggest that the engineered injectable antibiotic-laden fibrous microparticles hydrogels hold clinical prospects for endodontic infection ablation.Item Step-growth thiol-ene photopolymerization to form degradable, cytocompatible and multi-structural hydrogels(2014-01-17) Shih, Han; Lin, Chien-Chi; Xie, Dong; Bottino, MarcoHydrogels prepared from photopolymerization have been used for a variety of tissue engineering and controlled release applications. Polymeric biomaterials with high cytocompatibility, versatile degradation behaviors, and diverse material properties are particularly useful in studying cell fate processes. In recent years, step-growth thiol-ene photochemistry has been utilized to form cytocompatible hydrogels for tissue engineering applications. This radical-mediated gelation scheme utilizes norbornene functionalized multi-arm poly(ethylene glycol) (PEGNB) as the macromer and di-thiol containing molecules as the crosslinkers to form chemically crosslinked hydrogels. While the gelation mechanism was well-described in the literature, the network properties and degradation behaviors of these hydrogels have not been fully characterized. In addition, existing thiol-ene photopolymerizations often used type I photoinitiators in conjunction with an ultraviolet (UV) light source to initiate gelation. The use of cleavage type initiators and UV light often raises biosafety concerns. The first objective of this thesis was to understand the gelation and degradation properties of thiol-ene hydrogels. In this regard, two types of step-growth hydrogels were compared, namely thiol-ene hydrogels and Michael-type addition hydrogels. Between these two step-growth gel systems, it was found that thiol-ene click reactions formed hydrogels with higher crosslinking efficiency. However, thiol-ene hydrogels still contained significant network non-ideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEGNB macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, it was found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network crosslinking. In an attempt to manipulate network crosslinking and degradation rate of thiol-ene hydrogels, different macromer contents and peptide crosslinkers with different amino acid sequences were used. A chymotrypsin-sensitive peptide was also used as part of the hydrogel crosslinkers to render thiol-ene hydrogels enzymatically degradable. The second objective of this thesis was to develop a visible light-mediated thiol-ene hydrogelation scheme using a type II photoinitiator, eosin-Y, as the only photoinitiator. This approach eliminates the incorporation of potentially cytotoxic co-initiator and co-monomer that are typically used with a type II initiator. In addition to investigating the gelation kinetics and properties of thiol-ene hydrogels formed by this new gelation scheme, it was found that the visible light-mediated thiol-ene hydrogels were highly cytocompatible for human mesenchymal stem cells (hMSCs) and pancreatic MIN6 beta-cells. It was also found that eosin-Y could be repeatedly excited for preparing step-growth hydrogels with multilayer structures. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.