- Browse by Subject
Browsing by Subject "Big data"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item AI in Medical Imaging Informatics: Current Challenges and Future Directions(IEEE, 2020-07) Panayides, Andreas S.; Amini, Amir; Filipovic, Nenad D.; Sharma, Ashish; Tsaftaris, Sotirios A.; Young, Alistair; Foran, David; Do, Nhan; Golemati, Spyretta; Kurc, Tahsin; Huang, Kun; Nikita, Konstantina S.; Veasey, Ben P.; Zervakis, Michalis; Saltz, Joel H.; Pattichis, Constantinos S.; Biostatistics & Health Data Science, School of MedicineThis paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.Item Big data(2015-10-05) Coates, Heather L.Item Big Data Analytics for developing countries – Using the Cloud for Operational BI in Health(Wiley, 2013) Braa, Jørn; Purkayastha, SaptarshiThe multi-layered view of digital divide suggests there is inequality of access to ICT, inequality of capability to exploit ICT and inequality of outcomes after exploiting ICT. This is evidently clear in the health systems of developing countries. In this paper, we look at cloud computing being able to provide computing as a utility service that might bridge this digital divide for Health Information Systems in developing countries. We highlight the role of Operational Business Intelligence (BI) tools to be able to make better decisions in health service provisioning. Through the case of DHIS2 software and its Analytics-as-a-Service (AaaS) model, we look at how tools can exploit Cloud computing capabilities to perform analytics on Big Data that is resulting from integration of health data from multiple sources. Beyond looking at purely warehousing techniques, we suggest understanding Big Data from Organizational Capabilities and expanding organizational capabilities by offloading computing as a utility to vendors through cloud computing.Item Big Data and Dysmenorrhea: What Questions Do Women and Men Ask About Menstrual Pain?(Mary Ann Liebert, 2018-10) Chen, Chen X.; Groves, Doyle; Miller, Wendy R.; Carpenter, Janet S.; School of NursingBACKGROUND: Menstrual pain is highly prevalent among women of reproductive age. As the general public increasingly obtains health information online, Big Data from online platforms provide novel sources to understand the public's perspectives and information needs about menstrual pain. The study's purpose was to describe salient queries about dysmenorrhea using Big Data from a question and answer platform. MATERIALS AND METHODS: We performed text-mining of 1.9 billion queries from ChaCha, a United States-based question and answer platform. Dysmenorrhea-related queries were identified by using keyword searching. Each relevant query was split into token words (i.e., meaningful words or phrases) and stop words (i.e., not meaningful functional words). Word Adjacency Graph (WAG) modeling was used to detect clusters of queries and visualize the range of dysmenorrhea-related topics. We constructed two WAG models respectively from queries by women of reproductive age and bymen. Salient themes were identified through inspecting clusters of WAG models. RESULTS: We identified two subsets of queries: Subset 1 contained 507,327 queries from women aged 13-50 years. Subset 2 contained 113,888 queries from men aged 13 or above. WAG modeling revealed topic clusters for each subset. Between female and male subsets, topic clusters overlapped on dysmenorrhea symptoms and management. Among female queries, there were distinctive topics on approaching menstrual pain at school and menstrual pain-related conditions; while among male queries, there was a distinctive cluster of queries on menstrual pain from male's perspectives. CONCLUSIONS: Big Data mining of the ChaCha® question and answer service revealed a series of information needs among women and men on menstrual pain. Findings may be useful in structuring the content and informing the delivery platform for educational interventions.Item A big data augmented analytics platform to operationalize efficiencies at community clinics(2016-04-15) Kunjan, Kislaya; Jones, Josette F.; Toscos, Tammy; Wu, Huanmei; Holden, RichardCommunity Health Centers (CHCs) play a pivotal role in delivery of primary healthcare to the underserved, yet have not benefited from a modern data analytics platform that can support clinical, operational and financial decision making across the continuum of care. This research is based on a systems redesign collaborative of seven CHC organizations spread across Indiana to improve efficiency and access to care. Three research questions (RQs) formed the basis of this research, each of which seeks to address known knowledge gaps in the literature and identify areas for future research in health informatics. The first RQ seeks to understand the information needs to support operations at CHCs and implement an information architecture to support those needs. The second RQ leverages the implemented data infrastructure to evaluate how advanced analytics can guide open access scheduling – a specific use case of this research. Finally, the third RQ seeks to understand how the data can be visualized to support decision making among varying roles in CHCs. Based on the unique work and information flow needs uncovered at these CHCs, an end to-end analytics solution was designed, developed and validated within the framework of a rapid learning health system. The solution comprised of a novel heterogeneous longitudinal clinic data warehouse augmented with big data technologies and dashboard visualizations to inform CHCs regarding operational priorities and to support engagement in the systems redesign initiative. Application of predictive analytics on the health center data guided the implementation of open access scheduling and up to a 15% reduction in the missed appointment rates. Performance measures of importance to specific job profiles within the CHCs were uncovered. This was followed by a user-centered design of an online interactive dashboard to support rapid assessments of care delivery. The impact of the dashboard was assessed over time and formally validated through a usability study involving cognitive task analysis and a system usability scale questionnaire. Wider scale implementation of the data aggregation and analytics platform through regional health information networks could better support a range of health system redesign initiatives in order to address the national ‘triple aim’ of healthcare.Item Big data in healthcare - the promises, challenges and opportunities from a research perspective: A case study with a model database(AMIA, 2018-04-16) Adibuzzaman, Mohammad; DeLaurentis, Poching; Hill, Jennifer; Benneyworth, Brian D.; Pediatrics, School of MedicineRecent advances in data collection during routine health care in the form of Electronic Health Records (EHR), medical device data (e.g., infusion pump informatics, physiological monitoring data, and insurance claims data, among others, as well as biological and experimental data, have created tremendous opportunities for biological discoveries for clinical application. However, even with all the advancement in technologies and their promises for discoveries, very few research findings have been translated to clinical knowledge, or more importantly, to clinical practice. In this paper, we identify and present the initial work addressing the relevant challenges in three broad categories: data, accessibility, and translation. These issues are discussed in the context of a widely used detailed database from an intensive care unit, Medical Information Mart for Intensive Care (MIMIC III) database.Item Big data in the new media environment(2014-02) O'Donnell, Matthew Brook; Falk, Emily B.; Konrath, Sara H.Bentley et al. argue for the social scientific contextualization of “big data” by proposing a four-quadrant model. We suggest extensions of the east–west (i.e., socially motivated versus independently motivated) decision-making dimension in light of findings from social psychology and neuroscience. We outline a method that leverages linguistic tools to connect insights across fields that address the individuals underlying big-data media streams.Item Cracking the Code of Geo-Identifiers: Harnessing Data-Based Decision-Making for the Public Good(Universitat Politècnica de València, 2022) Herzog, Patricia SnellThe accessibility of official statistics to non-expert users could be aided by employing natural language processing and deep learning models to dataset lexicons. Specifically, the semantic structure of FIPS codes would offer a relatively standardized data dictionary of column names and string variable structure to identify: two-digits for states, followed by three-digits for counties. The technical, methodological contribution of this paper is a bibliometric analysis of scientific publications based on FIPS code analysis indicated that between 27,954 and 1,970,000 publications attend to this geo- identifier. Within a single dataset reporting national representative and longitudinal survey data, 141 publications utilize FIPS data. The high incidence shows the research impact. Yet, the low proportion of only 2.0 percent of all publications utilizing this dataset also shows a gap even among expert users. A data use case drawn from public health data implies that cracking the code of geo-identifiers could advance access by helping everyday users formulate data inquiries within intuitive language.Item Open Data and Open Code for Big Science of Science Studies(2013) Light, Robert P.; Polley, David E.; Börner, KatyHistorically, science of science studies were/are performed by single investigators or small teams. As the size and complexity of data sets and analyses scales up, a “Big Science” approach (Price, 1963) is required that exploits the expertise and resources of interdisciplinary teams spanning academic, government, and industry boundaries. Big science of science studies utilize “big data”, i.e., large, complex, diverse, longitudinal, and/or distributed datasets that might be owned by different stakeholders. They apply a systems science approach to uncover hidden patterns, bursts of activity, correlations, and laws. They make available open data and open code in support of replication of results, iterative refinement of approaches and tools, and education. This paper introduces a database-tool infrastructure that was designed to support big science of science studies. The open access Scholarly Database (SDB) (http://sdb.cns.iu.edu) provides easy access to 26 million paper, patent, grant, and clinical trial records. The open source Science of Science (Sci2) tool (http://sci2.cns.iu.edu) supports temporal, geospatial, topical, and network studies. The scalability of the infrastructure is examined. Results show that temporal analyses scale linearly with the number of records and file size, while the geospatial algorithm showed quadratic growth. The number of edges rather than nodes determined performance for network based algorithms.Item Toward Data-Driven Radiology Education—Early Experience Building Multi-Institutional Academic Trainee Interpretation Log Database (MATILDA)(Springer, 2016-12) Chen, Po-Hao; Loehfelm, Thomas W.; Kamer, Aaron P.; Lemmon, Andrew B.; Cook, Tessa S.; Kohli, Marc D.; Radiology and Imaging Sciences, School of MedicineThe residency review committee of the Accreditation Council of Graduate Medical Education (ACGME) collects data on resident exam volume and sets minimum requirements. However, this data is not made readily available, and the ACGME does not share their tools or methodology. It is therefore difficult to assess the integrity of the data and determine if it truly reflects relevant aspects of the resident experience. This manuscript describes our experience creating a multi-institutional case log, incorporating data from three American diagnostic radiology residency programs. Each of the three sites independently established automated query pipelines from the various radiology information systems in their respective hospital groups, thereby creating a resident-specific database. Then, the three institutional resident case log databases were aggregated into a single centralized database schema. Three hundred thirty residents and 2,905,923 radiologic examinations over a 4-year span were catalogued using 11 ACGME categories. Our experience highlights big data challenges including internal data heterogeneity and external data discrepancies faced by informatics researchers.