- Browse by Subject
Browsing by Subject "Baroreflex"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Analysis of Heart Rate Variability During Focal Parasympathetic Drive of the Rat Baroreflex(2020-05) Bustamante, David J.; Schild, John; Yoshida, Ken; Salama, PaulAutonomic control of the heart results in variations in the intervals between heart beats, known as heart rate variability. One of the defining components of autonomic control is the baroreflex, a negative feedback controller that balances heart rate and blood pressure. The baroreflex is under constant command from the branches of the autonomic nervous system. To better understand how the autonomic nervous system commands the baroreflex, a baroreflex reflexogenic animal protocol was carried out. Heart rate variability analysis and baroreflex sensitivity were used to quantify the neural control of the heart. This thesis reconfirmed the existence of sexually dimorphic properties in the baroreflex through the use of heart rate variability analysis and baroreflex sensitivity. It was discovered that there are many caveats to utilizing heart rate variability analysis, which have to be addressed both in the experimental protocol and the signal processing technique. Furthermore, it was suggested that the slope method for quantifying baroreflex sensitivity also has many caveats, and that other baroreflex sensitivity methods are likely more optimal for quantifying sustained activation of the baroreflex. By utilizing various heart rate variability signal processing algorithms to assess autonomic tone in Sprague-Dawley rats during rest and sustained electrical activation of the baroreflex, the null hypothesis was rejected.Item Contribution of Baroreflex Afferent Pathway to NPY-Mediated Regulation of Blood Pressure in Rats(Springer, 2020-04) Liu, Yang; Zhao, Shu-Yang; Feng, Yan; Sun, Jie; Lu, Xiao-Long; Yan, Qiu-Xin; Li, Ying; Liu, Zhuo; Wang, Lu-Qi; Sun, Xun; Li, Shijun; Qiao, Guo-Fen; Li, Bai-Yan; Pediatrics, School of MedicineNeuropeptide Y (NPY), a metabolism-related cardiovascular factor, plays a crucial role in blood pressure (BP) regulation via peripheral and central pathways. The expression of NPY receptors (Y1R/Y2R) specific to baroreflex afferents impacts on the sexually dimorphic neural control of circulation. This study was designed to investigate the expression profiles of NPY receptors in the nodose ganglion (NG) and nucleus tractus solitary (NTS) under hypertensive conditions. To this end, rats with hypertension induced by NG-nitro-L-arginine methylester (L-NAME) or high fructose drinking (HFD), and spontaneously hypertensive rats (SHRs) were used to explore the effects/mechanisms of NPY on BP using functional, molecular, and electrophysiological approaches. The data showed that BP was elevated along with baroreceptor sensitivity dysfunction in model rats; Y1R was up- or down-regulated in the NG or NTS of male and female HFD/L-NAME groups, while Y2R was only down-regulated in the HFD groups as well as in the NG of the male L-NAME group. In SHRs, Y1R and Y2R were both down-regulated in the NTS, and not in the NG. In addition to NPY-mediated energy homeostasis, leptin-melanocortin activation may be essential for metabolic disturbance-related hypertension. We found that leptin and α-melanocyte stimulating hormone (α-MSH) receptors were aberrantly down-regulated in HFD rats. In addition, α-MSH concentrations were reduced and NPY concentrations were elevated in the serum and NTS at 60 and 90 min after acute leptin infusion. Electrophysiological recordings showed that the decay time-constant and area under the curve of excitatory post-synaptic currents were decreased by Y1R activation in A-types, whereas, both were increased by Y2R activation in Ah- or C-types. These results demonstrate that sex- and afferent-specific NPY receptor expression in the baroreflex afferent pathway is likely to be a novel target for the clinical management of metabolism-related and essential hypertension.Item Functional contributions of a sex-specific population of myelinated aortic baroreceptors in rat and their changes following ovariectomy(2014) Santa Cruz Chavez, Grace C.; Schild, John H.; Nicol, Grant D.; Oxford, Gerry S.; Rusyniak, Daniel E.; Vasko, Michael R.Gender differences in the basal function of autonomic cardiovascular control are well documented. Consistent baroreflex (BRx) studies suggest that women have higher tonic parasympathetic cardiac activation compared to men. Later in life and concomitant with menopause, a significant reduction in the capacity of the BRx in females increases their risk to develop hypertension, even exceeding that of age-matched males. Loss of sex hormones is but one factor. In female rats, we previously identified a distinct myelinated baroreceptor (BR) neuronal phenotype termed Ah-type, which exhibits functional dynamics and ionic currents that are a mix of those observed in barosensory afferents functionally identified as myelinated A-type or unmyelinated C-type. Interestingly, Ah-type afferents constitute nearly 50% of the total population of myelinated aortic BR in female but less than 2% in male rat. We hypothesized that an afferent basis for sexual dimorphism in BRx function exists. Specifically, we investigated the potential functional impact Ah-type afferents have upon the aortic BRx and what changes, if any, loss of sex hormones through ovariectomy brings upon such functions. We assessed electrophysiological and reflexogenic differences associated with the left aortic depressor nerve (ADN) from adult male, female, and ovariectomized female (OVX) Sprague-Dawley rats. Our results revealed sexually dimorphic conduction velocity (CV) profiles. A distinct, slower myelinated fiber volley was apparent in compound action potential (CAP) recordings from female aortic BR fibers, with an amplitude and CV not observed in males. Subsequent BRx studies demonstrated that females exhibited significantly greater BRx responses compared to males at myelinated-specific intensities. Ovariectomy induced an increased overall temporal dispersion in the CAP of OVX females that may have contributed to their attenuated BRx responses. Interestingly, the most significant changes in depressor dynamics occurred at electrical thresholds and frequencies most closely aligned with Ah-type BR fibers. Collectively, we provide evidence that, in females, two anatomically distinct myelinated afferent pathways contribute to the integrated BRx function, whereas in males only one exists. These functional differences may partly account for the enhanced control of blood pressure in females. Furthermore, Ah-type afferents may provide a neuromodulatory pathway uniquely associated with the hormonal regulation of BRx function.Item Neuropeptide Y-mediated sex- and afferent-specific neurotransmissions contribute to sexual dimorphism of baroreflex afferent function(Impact Journals, 2016-10-04) Liu, Yang; Wu, Di; Qu, Mei-Yu; He, Jian-Li; Yuan, Mei; Zhao, Miao; Wang, Jian-Xin; He, Jian; Wang, Lu-Qi; Guo, Xin-Jing; Zuo, Meng; Zhao, Shu-Yang; Ma, Mei-Na; Li, Jun-Nan; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan; Department of Pediatrics, IU School of MedicineBACKGROUND: Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. METHODS: Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. RESULTS: The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ~15 and ~7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. CONCLUSIONS: Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation.Item Sustained Stimulus Paradigms and Sexual Dimorphism of the Aortic Baroreflex in Rat(2019-05) Mintch, Landan M.; Schild, John; Yoshida, Ken; Mirro, MichaelThe neurophysiological pathways associated with beat-to-beat regulation of mean arterial pressure are well known. Less known are the control dynamics associated with short term maintained of arterial blood pressure about a homeostatic set point. The barorefex (BRx), the most rapid and robust of neural refexes within the autonomic nervous system, is a negative feedback controller that monitors and regulates heart rate and blood pressure. By leveraging the parasympathetic and sympathetic divisions of the autonomic nervous system, the BRx can change blood pressure within a single heart beat. To better understand these controller dynamics, a classic BRx refexogenic experimental preparation was carried out. This thesis recon rmed previous observations of an electrically-evoked sexually-dimorphic peak depressor response in the BRx of Sprague-Dawley rats and veri ed that these functional refexogenic differences carry over to sustained electrical paradigms. Further, it uncovered interesting recovery dynamics in both blood pressure and heart rate. The rat aortic depressor nerve was used as an experimental target for electrical activation of the parasympathetic-mediated reduction in mean arterial pressure. The duration, frequency, and patterning of stimulation were explored, with emphasis on differences between sexes. By measuring the normalized percent decrease in mean arterial pressure as well as the differences in beats per minute during rest and during stimulation, the null hypothesis was rejected.