- Browse by Subject
Browsing by Subject "Bacterial immune evasion"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Streptococcus agalactiae cadD alleviates metal stress and promotes intracellular survival in macrophages and ascending infection during pregnancy(Springer Nature, 2022-09-14) Korir, Michelle L.; Doster, Ryan S.; Lu, Jacky; Guevara, Miriam A.; Spicer, Sabrina K.; Moore, Rebecca E.; Francis, Jamisha D.; Rogers, Lisa M.; Haley, Kathryn P.; Blackman, Amondrea; Noble, Kristen N.; Eastman, Alison J.; Williams, Janice A.; Damo, Steven M.; Boyd, Kelli L.; Townsend, Steven D.; Serezani, C. Henrique; Aronoff, David M.; Manning, Shannon D.; Gaddy, Jennifer A.; Medicine, School of MedicinePerinatal infection with Streptococcus agalactiae, or Group B Streptococcus (GBS), is associated with preterm birth, neonatal sepsis, and stillbirth. Here, we study the interactions of GBS with macrophages, essential sentinel immune cells that defend the gravid reproductive tract. Transcriptional analyses of GBS-macrophage co-cultures reveal enhanced expression of a gene encoding a putative metal resistance determinant, cadD. Deletion of cadD reduces GBS survival in macrophages, metal efflux, and resistance to metal toxicity. In a mouse model of ascending infection during pregnancy, the ΔcadD strain displays attenuated bacterial burden, inflammation, and cytokine production in gestational tissues. Furthermore, depletion of host macrophages alters cytokine expression and decreases GBS invasion in a cadD-dependent fashion. Our results indicate that GBS cadD plays an important role in metal detoxification, which promotes immune evasion and bacterial proliferation in the pregnant host.Item Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen(Springer Nature, 2016-12) Radolf, Justin D.; Deka, Ranjit K.; Anand, Arvind; Šmajs, David; Norgard, Michael V.; Yang, X. Frank; Microbiology and Immunology, School of MedicineThe past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.