- Browse by Subject
Browsing by Subject "BMP"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item BMP Pathway and Reactive Retinal Gliosis(2013-03-06) Dharmarajan, Subramanian; Belecky-Adams, Teri; Skalnik, David Gordon; Zhang, Xin; Atkinson, SimonReactive gliosis is known to have a beneficial and a degenerative effect following injury to neurons. Although many factors have been implicated in reactive gliosis, their role in regulating this change is still unclear. We investigated the role of bone morphogenetic proteins in reactive gliosis in vivo and in vitro. In vivo, IHC analysis indicated reactive gliosis in the 6 week Ins2Akita mouse and WPK rat retinas. Expression of BMP7 was upregulated in these models, leading to an increase in the phosphorylation of downstream SMAD1. In vitro, treatment of murine retinal astrocyte cells with a strong oxidizing agent such as sodium peroxynitrite regulated RNA levels of various markers, including GFAP, CSPGs, MMPs and TIMPs. BMP7 treatment also regulated RNA levels to a similar extent, suggesting reactive gliosis. Treatment with high glucose DMEM and BMP4, however, did not elicit increase in levels to a similar degree. Increase in SMAD levels and downstream targets of SMAD signaling such as ID1, ID3 and MSX2 was also observed following treatment with sodium peroxynitrite in vitro and in the 6 week Ins2Akita mouse retinas in vivo. These data concur with previously established data which show an increase in BMP7 levels following injury. It also demonstrates a role for BMP7 in gliosis following disease. Further, it suggests SMAD signaling to play a role in initiating reactivity in astrocytes as well as in remodeling the extracellular matrix following injury and in a disease condition.Item Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification(American Heart Association, 2016-07) Gomez-Stallons, M. Victoria; Wirrig-Schwendeman, Elaine E.; Hassel, Keira R.; Conway, Simon J.; Yutzey, Katherine E.; Pediatrics, School of MedicineOBJECTIVE: Calcific aortic valve disease (CAVD) is the most prevalent type of heart valve disease, affecting ≈2% of the US population. CAVD is characterized by the presence of calcific nodules, resulting in aortic valve (AoV) stenosis; however, the underlying mechanisms driving disease remain unknown. Studies of human diseased AoV provide initial evidence that bone morphogenetic protein (BMP) signaling, essential for normal bone formation, is activated during CAVD. Mice deficient in Klotho, an FGF23 transmembrane coreceptor, exhibit premature aging and develop AoV calcific nodules as occurs in human CAVD. The role of BMP signaling in the development of CAVD was examined in porcine aortic valve interstitial cells (VICs) and Klotho(-/-) mice. APPROACH AND RESULTS: We show that activation of BMP signaling, as indicated by pSmad1/5/8 expression, precedes and later localizes with AoV calcification in Klotho(-/-) mice. In addition, cellular and extracellular matrix changes resembling features of normal bone formation are accompanied by increased osteochondrogenic gene induction in calcified Klotho(-/-) AoV. Likewise, osteogenic media treatment of porcine VICs results in BMP pathway activation, increased osteochondrogenic gene induction, and formation of calcific nodules in vitro. We demonstrate that genetic inactivation of the BMP type IA receptor in Klotho(-/-) aortic VICs, as well as BMP pathway inhibition of osteogenic media-treated aortic VICs in vitro, results in the inhibition of AoV calcification. CONCLUSIONS: BMP signaling and osteochondrogenic gene induction are active in calcified Klotho(-/-) AoV in vivo and calcified porcine aortic VICs in vitro. Importantly, BMP signaling is required for the development of AoV calcification in vitro and in vivo.Item Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis(Federation of American Societies for Experimental Biology, 2016-06) Gu, Hongmei; Fisher, Amanda J.; Mickler, Elizabeth A.; Duerson, Frank, III; Cummings, Oscar W.; Peters-Golden, Marc; Twigg, Homer L., III; Woodruff, Trent M.; Wilkes, David S.; Vittal, Ragini; Medicine, School of MedicineComplement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-β and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-β1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-β/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.Item Halofuginone inhibits TGF-β/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis(Impact Journals, 2017-09-23) Juárez, Patricia; Fournier, Pierrick G.J.; Mohammad, Khalid S.; McKenna, Ryan C.; Davis, Holly W.; Peng, Xiang H.; Niewolna, Maria; Mauviel, Alain; Chirgwin, John M.; Guise, Theresa A.; Medicine, School of MedicineMore efficient therapies that target multiple molecular mechanisms are needed for the treatment of incurable bone metastases. Halofuginone is a plant alkaloid-derivative with antiangiogenic and antiproliferative effects. Here we demonstrate that halofuginone is an effective therapy for the treatment of bone metastases, through multiple actions that include inhibition of TGFβ and BMP-signaling., Halofuginone blocked TGF-β-signaling in MDA-MB-231 and PC3 cells showed by inhibition of TGF-β–induced Smad-reporter, phosphorylation of Smad-proteins, and expression of TGF-β-regulated metastatic genes. Halofuginone increased inhibitory Smad7-mRNA and reduced TGF-β-receptor II protein. Proline supplementation but not Smad7-knockdown reversed halofuginone-inhibition of TGF-β-signaling. Halofuginone also decreased BMP-signaling. Treatment of MDA-MB-231 and PC3 cells with halofuginone reduced the BMP-Smad-reporter (BRE)4, Smad1/5/8-phosphorylation and mRNA of the BMP-regulated gene Id-1. Halofuginone decreased immunostaining of phospho-Smad2/3 and phospho-Smad1/5/8 in cancer cells in vivo., Furthermore, halofuginone decreased tumor-take and growth of orthotopic-tumors. Mice with breast or prostate bone metastases treated with halofuginone had significantly less osteolysis than control mice. Combined treatment with halofuginone and zoledronic-acid significantly reduced osteolytic area more than either treatment alone. Thus, halofuginone reduces breast and prostate cancer bone metastases in mice and combined with treatment currently approved by the FDA is an effective treatment for this devastating complication of breast and prostate-cancer.Item Lacrimal gland development: From signaling interactions to regenerative medicine(Wiley, 2017-12) Garg, Ankur; Zhang, Xin; Biochemistry and Molecular Biology, School of MedicineThe lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease.