- Browse by Subject
Browsing by Subject "B cell"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Diminished Intracellular Invariant Chain Expression Following Vaccinia Virus Infection(American Association of Immunologists, 2009-08-01) Wang, Nan; Weber, Ekkehard; Blum, Janice S.; Microbiology and Immunology, School of MedicineVaccinia virus (VV) has been used as a vaccine to eradicate smallpox and as a vaccine for HIV and tumors. However, the immunoevasive properties of VV, have raised safety concerns. VV infection of APC perturbs MHC class II-mediated Ag presentation. Exposure of human B cell lines to VV induced a dramatic reduction in cellular expression of the class II chaperone, invariant chain (Ii) during the late stages (i.e. 8–10 h) of infection. Yet, cell viability and surface expression of MHC class II molecules were maintained up to 24 h after exposure to virus. Reductions in Ii and class II mRNA levels were detected as early as 6 h after VV infection of APC. To examine whether VV was acting solely to disrupt host protein synthesis, B cells were treated with an inhibitor of translation, cycloheximide (CHX). Within 1 h of B cell CHX treatment, Ii protein expression decreased coupled with a loss of class II presentation. Analysis of Ii degradation in VV or CHX treated cells, revealed on-going Ii proteolysis contributing to reduced steady state Ii levels in these APC. Yet in contrast with CHX, VV infection of APC altered lysosomal protease expression and Ii degradation. Virus infection induced cellular cathepsin L expression while reducing the levels of other lysosomal proteases. These results demonstrate that at late stages of VV infection, reductions in cellular Ii levels coupled with changes in lysosomal protease activity, contribute in part to defects in class II presentation.Item The gut microbiome, immunity, and Plasmodium severity(Elsevier, 2020-12) Waide, Morgan L.; Schmidt, Nathan W.; Pediatrics, School of MedicineMalaria continues to pose a severe threat to over half of the world's population each year. With no long-term, effective vaccine available and a growing resistance to antimalarials, there is a need for innovative methods of Plasmodium treatment. Recent evidence has pointed to a role of the composition of the gut microbiota in the severity of Plasmodium infection in both animal models and human studies. Further evidence has shown that the gut microbiota influences the adaptive immune response of the host, the arm of the immune system necessary for Plasmodium clearance, sustained Plasmodium immunity, and vaccine efficacy. Together, this illustrates the future potential of gut microbiota modulation as a novel method of preventing severe malaria.Item Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts(Wiley, 2015-12) McLetchie, Shawna; Volpp, Bryan D.; Dinauer, Mary C.; Blum, Janice S.; Department of Microbiology and Immunology, IU School of MedicineChronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients.