- Browse by Subject
Browsing by Subject "Azacitidine"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Carboplatin with Decitabine Therapy, in Recurrent Platinum Resistant Ovarian Cancer, Alters Circulating miRNAs Concentrations: A Pilot Study(PLOS, 2015-10-20) Benson, Eric A.; Skaar, Todd C.; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela; Department of Medicine, IU School of MedicineOBJECTIVE: Plasma miRNAs represent potential minimally invasive biomarkers to monitor and predict outcomes from chemotherapy. The primary goal of the current study-consisting of patients with recurrent, platinum-resistant ovarian cancer-was to identify the changes in circulating miRNA concentrations associated with decitabine followed by carboplatin chemotherapy treatment. A secondary goal was to associate clinical response with changes in circulating miRNA concentration. METHODS: We measured miRNA concentrations in plasma samples from 14 patients with platinum-resistant, recurrent ovarian cancer enrolled in a phase II clinical trial that were treated with a low dose of the hypomethylating agent (HMA) decitabine for 5 days followed by carboplatin on day 8. The primary endpoint was to determine chemotherapy-associated changes in plasma miRNA concentrations. The secondary endpoint was to correlate miRNA changes with clinical response as measured by progression free survival (PFS). RESULTS: Seventy-eight miRNA plasma concentrations were measured at baseline (before treatment) and at the end of the first cycle of treatment (day 29). Of these, 10 miRNAs (miR-193a-5p, miR-375, miR-339-3p, miR-340-5p, miR-532-3p, miR-133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p, and miR-148b-5p) displayed fold changes in concentration ranging from -2.9 to 4 (p<0.05), in recurrent platinum resistant ovarian cancer patients, that were associated with response to decitabine followed by carboplatin chemotherapy. Furthermore, lower concentrations of miR-148b-5p after this chemotherapy regimen were associated (P<0.05) with the PFS. CONCLUSIONS: This is the first report demonstrating altered circulating miRNA concentrations following a combination platinum plus HMA chemotherapy regiment. In addition, circulating miR-148b-5p concentrations were associated with PFS and may represent a novel biomarker of therapeutic response, with this chemotherapy regimen, in women with recurrent, drug-resistant ovarian cancer.Item The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer(American Association for Cancer Research, 2014-12-15) Fang, Fang; Munck, Joanne; Tang, Jessica; Taverna, Pietro; Wang, Yinu; Miller, David F. B.; Pilrose, Jay; Choy, Gavin; Azab, Mohammad; Pawelczak, Katherine S.; VanderVere-Carozza, Pamela; Wagner, Michael; Lyons, John; Matei, Daniela; Turchi, John J.; Nephew, Kenneth P.; Department of Medicine, IU School of MedicinePURPOSE: To investigate SGI-110 as a "chemosensitizer" in ovarian cancer and to assess its effects on tumor suppressor genes (TSG) and chemoresponsiveness-associated genes silenced by DNA methylation in ovarian cancer. EXPERIMENTAL DESIGN: Several ovarian cancer cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNA methylation and expression levels of TSG and other cancer-related genes in response to SGI-110 were measured by pyrosequencing and RT-PCR. RESULTS: We demonstrate in vitro that SGI-110 resensitized a range of platinum-resistant ovarian cancer cells to cisplatin (CDDP) and induced significant demethylation and reexpression of TSG, differentiation-associated genes, and putative drivers of ovarian cancer cisplatin resistance. In vivo, SGI-110 alone or in combination with CDDP was well tolerated and induced antitumor effects in ovarian cancer xenografts. Pyrosequencing analyses confirmed that SGI-110 caused both global (LINE1) and gene-specific hypomethylation in vivo, including TSGs (RASSF1A), proposed drivers of ovarian cancer cisplatin resistance (MLH1 and ZIC1), differentiation-associated genes (HOXA10 and HOXA11), and transcription factors (STAT5B). Furthermore, DNA damage induced by CDDP in ovarian cancer cells was increased by SGI-110, as measured by inductively coupled plasma-mass spectrometry analysis of DNA adduct formation and repair of cisplatin-induced DNA damage. CONCLUSIONS: These results strongly support further investigation of hypomethylating strategies in platinum-resistant ovarian cancer. Specifically, SGI-110 in combination with conventional and/or targeted therapeutics warrants further development in this setting.Item A Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian CancerA Randomized Phase II Trial of Epigenetic Priming with Guadecitabine and Carboplatin in Platinum-resistant, Recurrent Ovarian Cancer(American Association for Cancer Research, 2020-03-01) Oza, Amit M.; Matulonis, Ursula A.; Secord, Angeles Alvarez; Nemunaitis, John; Roman, Lynda D.; Blagden, Sarah P.; Banerjee, Susana; McGuire, William P.; Ghamande, Sharad; Birrer, Michael J.; Fleming, Gini F.; Markham, Merry Jennifer; Hirte, Hal W.; Provencher, Diane M.; Basu, Bristi; Kristeleit, Rebecca; Armstrong, Deborah K.; Schwartz, Benjamin; Braly, Patricia; Hall, Geoff D.; Nephew, Kenneth P.; Jueliger, Simone; Oganesian, Aram; Naim, Sue; Hao, Yong; Keer, Harold; Azab, Mohammad; Matei, Daniela; Anatomy and Cell Biology, School of MedicinePURPOSE: Platinum resistance in ovarian cancer (OC) is associated with epigenetic modifications. Hypomethylating agents (HMAs) have been studied as carboplatin re-sensitizing agents in OC. This randomized phase 2 trial compared guadecitabine, a second generation HMA, and carboplatin (G+C) against second-line chemotherapy in women with measurable or detectable platinum-resistant OC. PATIENTS AND METHODS: Patients received either G+C (guadecitabine 30 mg/m2 SC once-daily for 5 days and carboplatin) or treatment of choice (TC; topotecan, pegylated liposomal doxorubicin, paclitaxel, or gemcitabine) in 28-day cycles until progression or unacceptable toxicity. The primary endpoint was progression-free survival (PFS); secondary endpoints were RECIST v1.1 and CA-125 response rate, 6-month PFS, and overall survival (OS). RESULTS: Of 100 patients treated, 51 received G+C and 49 received TC, of which 27 crossed over to G+C. The study did not meet its primary endpoint as the median PFS was not statistically different between arms (16.3 weeks vs 9.1 weeks in the G+C and TC groups, respectively; P = 0.07). However, the 6-month PFS rate was significantly higher in the G+C group (37% vs. 11% in TC group; P = 0.003). The incidence of grade 3 or higher toxicity was similar in G+C and TC groups (51% and 49%, respectively), with neutropenia and leukopenia being more frequent in the G+C group. CONCLUSIONS: Although this trial did not show superiority for PFS of G+C versus TC, the 6-month PFS increased in G+C treated patients. Further refinement of this strategy should focus on identification of predictive markers for patient selection.