- Browse by Subject
Browsing by Subject "Axons"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Axoplasmic flow and regeneration(1968) Johnson, JeffItem Chx10+V2a interneurons in spinal motor regulation and spinal cord injury(Wolters Kluwer, 2023) Li, Wen-Yuan; Deng, Ling-Xiao; Zhai, Feng-Guo; Wang, Xiao-Yu; Li, Zhi-Gang; Wang, Ying; Neurological Surgery, School of MedicineChx10-expressing V2a (Chx10+V2a) spinal interneurons play a large role in the excitatory drive of motoneurons. Chemogenetic ablation studies have demonstrated the essential nature of Chx10+V2a interneurons in the regulation of locomotor initiation, maintenance, alternation, speed, and rhythmicity. The role of Chx10+V2a interneurons in locomotion and autonomic nervous system regulation is thought to be robust, but their precise role in spinal motor regulation and spinal cord injury have not been fully explored. The present paper reviews the origin, characteristics, and functional roles of Chx10+V2a interneurons with an emphasis on their involvement in the pathogenesis of spinal cord injury. The diverse functional properties of these cells have only been substantiated by and are due in large part to their integration in a variety of diverse spinal circuits. Chx10+V2a interneurons play an integral role in conferring locomotion, which integrates various corticospinal, mechanosensory, and interneuron pathways. Moreover, accumulating evidence suggests that Chx10+V2a interneurons also play an important role in rhythmic patterning maintenance, left-right alternation of central pattern generation, and locomotor pattern generation in higher order mammals, likely conferring complex locomotion. Consequently, the latest research has focused on postinjury transplantation and noninvasive stimulation of Chx10+V2a interneurons as a therapeutic strategy, particularly in spinal cord injury. Finally, we review the latest preclinical study advances in laboratory derivation and stimulation/transplantation of these cells as a strategy for the treatment of spinal cord injury. The evidence supports that the Chx10+V2a interneurons act as a new therapeutic target for spinal cord injury. Future optimization strategies should focus on the viability, maturity, and functional integration of Chx10+V2a interneurons transplanted in spinal cord injury foci.Item Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death(Wiley, 2009-11) Titsworth, W. Lee; Cheng, Xiaoxin; Ke, Yan; Deng, Lingxiao; Burckardt, Kenneth A.; Pendleton, Chris; Liu, Nai-Kui; Shao, Hui; Cao, Qi-Lin; Xu, Xiao-Ming; Department of Medicine, IU School of MedicineAfter the initial mechanical insult of spinal cord injury (SCI), secondary mediators propagate a massive loss of oligodendrocytes. We previously showed that following SCI both the total phospholipase activity and cytosolic PLA(2)-IV alpha protein expression increased. However, the expression of secreted isoforms of PLA(2) (sPLA(2)) and their possible roles in oligodendrocyte death following SCI remained unclear. Here we report that mRNAs extracted 15 min, 4 h, 1 day, or 1 month after cervical SCI show marked upregulation of sPLA(2)-IIA and IIE at 4 h after injury. In contrast, SCI induced down regulation of sPLA(2)-X, and no change in sPLA(2)-IB, IIC, V, and XIIA expression. At the lesion site, sPLA(2)-IIA and IIE expression were localized to oligodendrocytes. Recombinant human sPLA(2)-IIA (0.01, 0.1, or 2 microM) induced a dose-dependent cytotoxicity in differentiated adult oligodendrocyte precursor cells but not primary astrocytes or Schwann cells in vitro. Most importantly, pretreatment with S3319, a sPLA(2)-IIA inhibitor, before a 30 min H(2)O(2) injury (1 or 10 mM) significantly reduced oligodendrocyte cell death at 48 h. Similarly, pretreatment with S3319 before injury with IL-1 beta and TNFalpha prevented cell death and loss of oligodendrocyte processes at 72 h. Collectively, these findings suggest that sPLA(2)-IIA and IIE are increased following SCI, that increased sPLA(2)-IIA can be cytotoxic to oligodendrocytes, and that in vitro blockade of sPLA(2) can create sparing of oligodendrocytes in two distinct injury models. Therefore, sPLA(2)-IIA may be an important mediator of oligodendrocyte death and a novel target for therapeutic intervention following SCI.Item Enlarging the Nosological Spectrum of Hereditary Diffuse Leukoencephalopathy with Axonal Spheroids (HDLS)(Wiley, 2014-09) Hoffmann, Sarah; Murrell, Jill; Harms, Lutz; Miller, Kelly; Meisel, Andreas; Brosch, Thomas; Scheel, Michael; Ghetti, Bernardino; Goebel, Hans-Hilmar; Stenzel, Werner; Pathology and Laboratory Medicine, School of MedicineHereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) is an autosomal dominant disease clinically characterized by cognitive decline, personality changes, motor impairment, parkinsonism and seizures. Recently, mutations in the colony-stimulating factor-1 receptor (CSF1R) gene have been shown to be associated with HDLS. We report clinical, neuropathological and molecular genetic findings of patients from a new family with a mutation in the CSF1R gene. Disease onset was earlier and disease progression was more rapid compared with previously reported patients. Psychiatric symptoms including personality changes, alcohol abuse and severe depression were the first symptoms in male patients. In the index, female patient, the initial symptom was cognitive decline. Magnetic resonance imaging (MRI) showed bilateral, confluent white matter lesions in the cerebrum. Stereotactic biopsy revealed loss of myelin and microglial activation as well as macrophage infiltration of the parenchyma. Numerous axonal swellings and spheroids were present. Ultrastructural analysis revealed pigment-containing macrophages. Axonal swellings were detected by electron microscopy not only in the central nervous system (CNS) but also in skin nerves. We identified a heterozygous mutation (c.2330G>A, p.R777Q) in the CSF1R gene. Through this report, we aim to enlarge the nosological spectrum of HDLS, providing new clinical descriptions as well as novel neuropathological findings from the peripheral nervous system.Item Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats(Elsevier, 2014-11) Wang, Xiaofei; Xu, Xiao-Ming; Department of Neurological Surgery, IU School of MedicineSchwann cells (SCs) have been considered to be one of the most promising cell types for transplantation to treat spinal cord injury (SCI) due to their unique growth-promoting properties. Despite the extensive use as donor cells for transplantation in SCI models, the fate of SCs is controversial due in part to the lack of a reliable marker for tracing the grafted SCs. To precisely assess the fate and temporal profile of transplanted SCs, we isolated purified SCs from sciatic nerves of adult transgenic rats overexpressing GFP (SCs-GFP). SCs-GFP were directly injected into the epicenter of a moderate contusive SCI at the mid-thoracic level at 1week post-injury. The number of SCs-GFP or SCs-GFP labeled with Bromodeoxyuridine (BrdU) was quantified at 5min, 1day, and 1, 2, 4, 12 and 24weeks after cell injection. Basso, Beattie, and Bresnahan (BBB) locomotor rating scale, footfall error, thermal withdrawal latency, and footprint analysis were performed before and after the SCs-GFP transplantation. After transplantation, SCs-GFP quickly filled the lesion cavity. A remarkable survival of grafted SCs-GFP up to 24weeks post-grafting was observed with clearly identified SC individuals. SCs-GFP proliferated after injection, peaked at 2weeks (26% of total SCs-GFP), decreased thereafter, and ceased at 12weeks post-grafting. Although grafted SCs-GFP were mainly confined within the border of surrounding host tissue, they migrated along the central canal for up to 5.0mm at 4weeks post-grafting. Within the lesion site, grafted SCs-GFP myelinated regenerated axons and expressed protein zero (P0) and myelin basic protein (MBP). Within the SCs-GFP grafts, new blood vessels were formed. Except for a significant decrease of angle of rotation in the footprint analysis, we did not observe significant behavioral improvements in BBB locomotor rating scale, thermal withdrawal latency, or footfall errors, compared to the control animals that received no SCs-GFP. We conclude that SCs-GFP can survive remarkably well, proliferate, migrate along the central canal, and myelinate regenerated axons when being grafted into a clinically-relevant contusive SCI in adult rats. Combinatorial strategies, however, are essential to achieve a more meaningful functional regeneration of which SCs may play a significant role.Item Schwann Cells Are Key Regulators of Corneal Epithelial Renewal(Association for Research in Vision and Ophthalmology (ARVO), 2023) Mirmoeini, Kaveh; Tajdaran, Kiana; Zhang, Jennifer; Gordon, Tessa; Ali, Asim; Kaplan, David R.; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of MedicinePurpose: Corneal sensory nerves protect the cornea from injury. They are also thought to stimulate limbal stem cells (LSCs) to produce transparent epithelial cells constantly, enabling vision. In other organs, Schwann cells (SCs) associated with tissue-innervating axon terminals mediate tissue regeneration. This study defines the critical role of the corneal axon-ensheathing SCs in homeostatic and regenerative corneal epithelial cell renewal. Methods: SC localization in the cornea was determined by in situ hybridization and immunohistochemistry with SC markers. In vivo SC visualization and/or ablation were performed in mice with inducible corneal SC-specific expression of tdTomato and/or Diphtheria toxin, respectively. The relative locations of SCs and LSCs were observed with immunohistochemical analysis of harvested genetically SC-prelabeled mouse corneas with LSC-specific antibodies. The correlation between cornea-innervating axons and the appearance of SCs was ascertained using corneal denervation in rats. To determine the limbal niche cellular composition and gene expression changes associated with innervation-dependent epithelial renewal, single-cell RNA sequencing (scRNA-seq) of dissociated healthy, de-epithelized, and denervated cornea limbi was performed. Results: We observed limbal enrichment of corneal axon-associated myelinating and non-myelinating SCs. Induced local genetic ablation of SCs, although leaving corneal sensory innervation intact, markedly inhibited corneal epithelial renewal. scRNA-seq analysis (1) highlighted the transcriptional heterogenicity of cells populating the limbal niche, and (2) identified transcriptional changes associated with corneal innervation and during wound healing that model potential regulatory paracrine interactions between SCs and LSCs. Conclusions: Limbal SCs are required for innervation-dependent corneal epithelial renewal.