- Browse by Subject
Browsing by Subject "Axonal regeneration"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury(Elsevier, 2018-02) Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin; Neurological Surgery, School of MedicineActivity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI.Item DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses(Elsevier, 2024) Asghari Adib, Elham; Shadrach, Jennifer L.; Reilly-Jankowiak, Lauren; Dwivedi, Manish K.; Rogers, Abigail E.; Shahzad, Shameena; Passino, Ryan; Giger, Roman J.; Pierchala, Brian A.; Collins, Catherine A.; Anatomy, Cell Biology and Physiology, School of MedicineAxotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.Item Laminin-coated multifilament entubulation, combined with Schwann cells and glial cell line-derived neurotrophic factor, promotes unidirectional axonal regeneration in a rat model of thoracic spinal cord hemisection(Wolters Kluwer, 2021-01) Deng, Ling-Xiao; Liu, Nai-Kui; Wen, Ryan Ning; Yang, Shuang-Ni; Wen, Xuejun; Xu, Xiao-Ming; Neurological Surgery, School of MedicineBiomaterial bridging provides physical substrates to guide axonal growth across the lesion. To achieve efficient directional guidance, combinatory strategies using permissive matrix, cells and trophic factors are necessary. In the present study, we evaluated permissive effect of poly (acrylonitrile-co-vinyl chloride) guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells, and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats. We found that channels with filaments significantly reduced the lesion cavity, astrocytic gliosis, and inflammatory responses at the graft-host boundaries. The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor. These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold, adhesive molecular laminin, Schwann cells, and glial cell line-derived neurotrophic factor, provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injuryItem Regeneration and plasticity of descending propriospinal neurons after transplantation of Schwann cells overexpressing glial cell line-derived neurotrophic factor following thoracic spinal cord injury in adult rats(2015-07) Deng, Lingxiao; Xu, Xiao-Ming; Sengelaub, Dale R.; Jin, Xiao-Ming; Khanna, Rajesh; Chen, JinhuiAfter spinal cord injury (SCI), poor axonal regeneration of the central nervous system, which mainly attributed to glial scar and low intrinsic regenerating capacity of severely injured neurons, causes limited functional recovery. Combinatory strategy has been applied to target multiple mechanisms. Schwann cells (SCs) have been explored as promising donors for transplantation to promote axonal regeneration. Among the central neurons, descending propriospinal neurons (DPSN) displayed the impressive regeneration response to SCs graft. Glial cell line-derived neurotrophic factor (GDNF), which receptor is widely expressed in nervous system, possesses the ability to promote neuronal survival, axonal regeneration/sprouting, remyelination, synaptic formation and modulate the glial response. We constructed a novel axonal permissive pathway in rat model of thoracic complete transection injury by grafting SCs over-expressing GDNF (SCs-GDNF) both inside and caudal to the lesion gap. Behavior evaluation and histological analyses have been applied to this study. Our results indicated that tremendous DPSN axons as well as brain stem axons regenerated across the lesion gap back to the caudal spinal cord. In addition to direct promotion on axonal regeneration, GDNF also significantly improved the astroglial environment around the lesion. These regenerations caused motor functional recovery. The dendritic plasticity of axotomized DPSN also contributed to the functional recovery. We applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of DPSNs and its response to axotomy injury and GDNF treatment. We also investigated the neurotransmitters phenotype of FluoroGold (FG) labeled DPSNs. Our results indicated that over 90 percent of FG-labeled DPSNs were glutamatergic neurons. DPSNs in sham animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution, with dorsal-ventral retraction and lateral-medial extension of dendrites. Treatment with GDNF significantly increased the terminal dendritic length of DPSNs. The density of spine-like structures was increased after injury and treatment with GDNF enhanced this effect.Item Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury(Elsevier, 2015-09-04) Deng, Ling-Xiao; Walker, Chandler; Xu, Xiao-Ming; Department of Anatomy & Cell Biology, IU School of MedicineAfter spinal cord injury (SCI), poor ability of damaged axons of the central nervous system (CNS) to regenerate causes very limited functional recovery. Schwann cells (SCs) have been widely explored as promising donors for transplantation to promote axonal regeneration in the CNS including the spinal cord. Compared with other CNS axonal pathways, injured propriospinal tracts display the strongest regenerative response to SC transplantation. Even without providing additional neurotrophic factors, propriospinal axons can grow into the SC environment which is rarely seen in supraspinal tracts. Propriospinal tract has been found to respond to several important neurotrophic factors secreted by SCs. Therefore, the SC is considered to be one of the most promising candidates for cell-based therapies for SCI. Since many reviews have already appeared on topics of SC transplantation in SCI repair, this review will focus particularly on the rationale of SC transplantation in mediating descending propriospinal axonal regeneration as well as optimizing such regeneration by using different combinatorial strategies. This article is part of a Special Issue entitled SI: Spinal cord injury.Item Targeted tissue engineering: hydrogels with linear capillary channels for axonal regeneration after spinal cord injury(Medknow Publications, 2018-04) Liu, Shengwen; Blesch, Armin; Neurological Surgery, School of MedicineSpinal cord injury (SCI) frequently results in the permanent loss of function below the level of injury due to the failure of axonal regeneration in the adult mammalian central nervous system (CNS). The limited intrinsic growth capacity of adult neurons, a lack of growth-promoting factors and the multifactorial inhibitory microenvironment around the lesion site contribute to the lack of axonal regeneration. Strategies such as transplantation of cells, delivery of bioactive compounds and gene transfer have been investigated as a means to promote axonal regrowth through the lesion, to form new synaptic connections and to improve functional outcomes. Although growth of some axonal populations can be robustly enhanced by cellular implants alone or in combination with neurotrophic factors, axons usually extend in random orientation and even reverse growth direction in the lesion site (Figure 1A) (Gros et al., 2010; Günther et al., 2015). Thus, regenerating axons often fail to approach the distal edge of the lesion site, a pre-requisite for proper contact with spared host neurons. The lack of a 3-dimensional organization in the injury site is therefore an additional barrier for successful axonal bridging. Two approaches, physical guidance through structured scaffolds and chemical guidance by growth factor gradients, have emerged as potential means to provide directional cues for axonal growth through the lesion.