- Browse by Subject
Browsing by Subject "Autophagy"
Now showing 1 - 10 of 72
Results Per Page
Sort Options
Item A remarkable adaptive paradigm of heart performance and protection emerges in response to marked cardiac-specific overexpression of ADCY8(eLife Sciences, 2022-12-14) Tarasov, Kirill V.; Chakir, Khalid; Riordon, Daniel R.; Lyashkov, Alexey E.; Ahmet, Ismayil; Perino, Maria Grazia; Silvester, Allwin Jennifa; Zhang, Jing; Wang, Mingyi; Lukyanenko, Yevgeniya O.; Qu, Jia-Hua; Barrera, Miguel Calvo-Rubio; Juhaszova, Magdalena; Tarasova, Yelena S.; Ziman, Bruce; Telljohann, Richard; Kumar, Vikas; Ranek, Mark; Lammons, John; Bychkov, Rostislav; de Cabo, Rafael; Jun, Seungho; Keceli, Gizem; Gupta, Ashish; Yang, Dongmei; Aon, Miguel A.; Adamo, Luigi; Morrell, Christopher H.; Otu, Walter; Carroll, Cameron; Chambers, Shane; Paolocci, Nazareno; Huynh, Thanh; Pacak, Karel; Weiss, Robert; Field, Loren; Sollott, Steven J.; Lakatta, Edward G.; Medicine, School of MedicineAdult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TGAC8) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TGAC8, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TGAC8 was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TGAC8 vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TGAC8 did not differ from WT. Unbiased omics analyses identified more than 2,000 transcripts and proteins, comprising a broad array of biological processes across multiple cellular compartments, which differed by genotype; compared to WT, in TGAC8 there was a shift from fatty acid oxidation to aerobic glycolysis in the context of increased utilization of the pentose phosphate shunt and nucleotide synthesis. Thus, marked overexpression of AC8 engages complex, coordinate adaptation "circuity" that has evolved in mammalian cells to defend against stress that threatens health or life (elements of which have already been shown to be central to cardiac ischemic pre-conditioning and exercise endurance cardiac conditioning) that may be of biological significance to allow for proper healing in disease states such as infarction or failure of the heart.Item Acquisition of neurodegenerative features in isogenic OPTN(E50K) human stem cell-derived retinal ganglion cells associated with autophagy disruption and mTORC1 signaling reduction(Springer Nature, 2024-10-18) Huang, Kang‑Chieh; Gomes, Cátia; Shiga, Yukihiro; Belforte, Nicolas; VanderWall, Kirstin B.; Lavekar, Sailee S.; Fligor, Clarisse M.; Harkin, Jade; Hetzer, Shelby M.; Patil, Shruti V.; Di Polo, Adriana; Meyer, Jason S.; Biology, School of ScienceThe ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) has led to numerous advances in the field of retinal research, with great potential for the use of hPSC-derived RGCs for studies of human retinal development, in vitro disease modeling, drug discovery, as well as their potential use for cell replacement therapeutics. Of all these possibilities, the use of hPSC-derived RGCs as a human-relevant platform for in vitro disease modeling has received the greatest attention, due to the translational relevance as well as the immediacy with which results may be obtained compared to more complex applications like cell replacement. While several studies to date have focused upon the use of hPSC-derived RGCs with genetic variants associated with glaucoma or other optic neuropathies, many of these have largely described cellular phenotypes with only limited advancement into exploring dysfunctional cellular pathways as a consequence of the disease-associated gene variants. Thus, to further advance this field of research, in the current study we leveraged an isogenic hPSC model with a glaucoma-associated mutation in the Optineurin (OPTN) protein, which plays a prominent role in autophagy. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor AMPK, along with subsequent neurodegeneration in OPTN(E50K) RGCs differentiated from hPSCs, and have further validated some of these findings in a mouse model of ocular hypertension. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN(E50K) RGCs. Taken together, these results highlighted that autophagy disruption resulted in increased autophagic demand which was associated with downregulated signaling through mTORC1, contributing to the degeneration of RGCs.Item The Activation and Function of Autophagy in Alcoholic Liver Disease(Bentham Science Publishers, 2017) Khambu, Bilon; Wang, Lin; Zhang, Hao; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineItem Adverse Effects of Fenofibrate in Mice Deficient in the Protein Quality Control Regulator, CHIP(MDPI, 2018-08) Ravi, Saranya; Parry, Traci L.; Willis, Monte S.; Lockyer, Pamela; Patterson, Cam; Bain, James R.; Stevens, Robert D.; Ilkayeva, Olga R.; Newgard, Christopher B.; Schisler, Jonathan C.; Pathology and Laboratory Medicine, School of MedicineWe previously reported how the loss of CHIP expression (Carboxyl terminus of Hsc70-Interacting Protein) during pressure overload resulted in robust cardiac dysfunction, which was accompanied by a failure to maintain ATP levels in the face of increased energy demand. In this study, we analyzed the cardiac metabolome after seven days of pressure overload and found an increase in long-chain and medium-chain fatty acid metabolites in wild-type hearts. This response was attenuated in mice that lack expression of CHIP (CHIP-/-). These findings suggest that CHIP may play an essential role in regulating oxidative metabolism pathways that are regulated, in part, by the nuclear receptor PPARα (Peroxisome Proliferator-Activated Receptor alpha). Next, we challenged CHIP-/- mice with the PPARα agonist called fenofibrate. We found that treating CHIP-/- mice with fenofibrate for five weeks under non-pressure overload conditions resulted in decreased skeletal muscle mass, compared to wild-type mice, and a marked increase in cardiac fibrosis accompanied by a decrease in cardiac function. Fenofibrate resulted in decreased mitochondrial cristae density in CHIP-/- hearts as well as decreased expression of genes involved in the initiation of autophagy and mitophagy, which suggests that a metabolic challenge, in the absence of CHIP expression, impacts pathways that contribute to mitochondrial quality control. In conclusion, in the absence of functional CHIP expression, fenofibrate results in unexpected skeletal muscle and cardiac pathologies. These findings are particularly relevant to patients harboring loss-of-function mutations in CHIP and are consistent with a prominent role for CHIP in regulating cardiac metabolism.Item AMDE-1 is a dual function chemical for autophagy activation and inhibition(PLoS, 2015-04-20) Li, Min; Yang, Zuolong; Vollmer, Laura L.; Gao, Ying; Fu, Yuanyuan; Lui, Cui; Chen, Xiaoyun; Liu, Peiqing; Vogt, Andreas; Yin, Xiao-Ming; Department of Pathology and Laboratory Medicine, IU School of MedicineAutophagy is the process by which cytosolic components and organelles are delivered to the lysosome for degradation. Autophagy plays important roles in cellular homeostasis and disease pathogenesis. Small chemical molecules that can modulate autophagy activity may have pharmacological value for treating diseases. Using a GFP-LC3-based high content screening assay we identified a novel chemical that is able to modulate autophagy at both initiation and degradation levels. This molecule, termed as Autophagy Modulator with Dual Effect-1 (AMDE-1), triggered autophagy in an Atg5-dependent manner, recruiting Atg16 to the pre-autophagosomal site and causing LC3 lipidation. AMDE-1 induced autophagy through the activation of AMPK, which inactivated mTORC1 and activated ULK1. AMDE-1did not affect MAP kinase, JNK or oxidative stress signaling for autophagy induction. Surprisingly, treatment with AMDE-1 resulted in impairment in autophagic flux and inhibition of long-lived protein degradation. This inhibition was correlated with a reduction in lysosomal degradation capacity but not with autophagosome-lysosome fusion. Further analysis indicated that AMDE-1 caused a reduction in lysosome acidity and lysosomal proteolytic activity, suggesting that it suppressed general lysosome function. AMDE-1 thus also impaired endocytosis-mediated EGF receptor degradation. The dual effects of AMDE-1 on autophagy induction and lysosomal degradation suggested that its net effect would likely lead to autophagic stress and lysosome dysfunction, and therefore cell death. Indeed, AMDE-1 triggered necroptosis and was preferentially cytotoxic to cancer cells. In conclusion, this study identified a new class of autophagy modulators with dual effects, which can be explored for potential uses in cancer therapy.Item Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells(Elsevier, 2022) Gomes, Cátia; VanderWall, Kirstin B.; Pan, Yanling; Lu, Xiaoyu; Lavekar, Sailee S.; Huang, Kang-Chieh; Fligor, Clarisse M.; Harkin, Jade; Zhang, Chi; Cummins, Theodore R.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineAlthough the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.Item ATG14 plays a critical role in hepatic lipid droplet homeostasis(Elsevier, 2023) Huang, Menghao; Zhang, Yang; Park, Jimin; Chowdhury, Kushan; Xu, Jiazhi; Lu, Alex; Wang, Lu; Zhang, Wenjun; Ekser, Burcin; Yu, Liqing; Dong, X. Charlie; Biochemistry and Molecular Biology, School of MedicineBackground & aims: Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. Methods: ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. Results: Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. Conclusions: Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.Item Autophagy dysregulation in cell culture and animals models of Spinal Muscular Atrophy(Elsevier, 2014-07) Custer, Sara K.; Androphy, Elliot J.; Department of Dermatology, IU School of MedicineAbnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remains unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.Item Autophagy in Alcoholic Liver Disease, Self-eating Triggered by Drinking(Elsevier, 2015-09) Wang, Lin; Khambu, Bilon; Zhang, Hao; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineMacroautophagy (autophagy) is an evolutionarily conserved mechanism. It is important for normal cellular function and also plays critical roles in the etiology and pathogenesis of a number of human diseases. In alcohol-induced liver disease, autophagy is a protective mechanism against the liver injury caused by alcohol. Autophagy is activated in acute ethanol treatment but could be suppressed in chronic and/or high dose treatment of alcohol. The selective removal of lipid droplets and/or damaged mitochondria is likely the major mode of autophagy in reducing liver injury. Understanding the dynamics of the autophagy process and the approach to modulate autophagy could help finding new ways to battle against alcohol-induced liver injury.Item Autophagy in liver diseases: A matter of what to remove and whether to keep(KeAi Communications, 2018-09) Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of Medicine