ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Atiyah-Segal construction"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The topological Atiyah-Segal map
    (arXiv, 2023) Ramras, Daniel A.; Mathematical Sciences, School of Science
    Associated to each finite dimensional linear representation of a group G, there is a vector bundle over the classifying space BG. This construction was studied extensively for compact groups by Atiyah and Segal. We introduce a homotopy theoretical framework for studying the Atiyah-Segal construction in the context of infinite discrete groups, taking into account the topology of representation spaces. We explain how this framework relates to the Novikov conjecture, and we consider applications to spaces of flat connections on the over the 3-dimensional Heisenberg manifold and families of flat bundles over classifying spaces of groups satisfying Kazhdan's property (T).
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University