- Browse by Subject
Browsing by Subject "Astrogliosis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy(BMC, 2020-07-25) Taylor, Xavier; Cisternas, Pablo; You, Yanwen; You, Yingjian; Xiang, Shunian; Marambio, Yamil; Zhang, Jie; Vidal, Ruben; Lasagna-Reeves, Cristian A.; Anatomy and Cell Biology, School of MedicineBackground Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of amyloid beta (Aβ), other amyloids are known to associate with the vasculature. Alzheimer’s disease (AD) is characterized by parenchymal Aβ deposition, intracellular accumulation of tau, and significant neuroinflammation. CAA increases with age and is present in 85–95% of individuals with AD. A substantial amount of research has focused on understanding the connection between parenchymal amyloid and glial activation and neuroinflammation, while associations between vascular amyloid pathology and glial reactivity remain understudied. Methods Here, we dissect the glial and immune responses associated with early-stage CAA with histological, biochemical, and gene expression analyses in a mouse model of familial Danish dementia (FDD), a neurodegenerative disease characterized by the vascular accumulation of Danish amyloid (ADan). Findings observed in this CAA mouse model were complemented with primary culture assays. Results We demonstrate that early-stage CAA is associated with dysregulation in immune response networks and lipid processing, severe astrogliosis with an A1 astrocytic phenotype, and decreased levels of TREM2 with no reactive microgliosis. Our results also indicate how cholesterol accumulation and ApoE are associated with vascular amyloid deposits at the early stages of pathology. We also demonstrate A1 astrocytic mediation of TREM2 and microglia homeostasis. Conclusion The initial glial response associated with early-stage CAA is characterized by the upregulation of A1 astrocytes without significant microglial reactivity. Gene expression analysis revealed that several AD risk factors involved in immune response and lipid processing may also play a preponderant role in CAA. This study contributes to the increasing evidence that brain cholesterol metabolism, ApoE, and TREM2 signaling are major players in the pathogenesis of AD-related dementias, including CAA. Understanding the basis for possible differential effects of glial response, ApoE, and TREM2 signaling on parenchymal plaques versus vascular amyloid deposits provides important insight for developing future therapeutic interventions.Item Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study(Wiley, 2023) Dage, Jeffrey L.; Eloyan, Ani; Thangarajah, Maryanne; Hammers, Dustin B.; Fagan, Anne M.; Gray, Julia D.; Schindler, Suzanne E.; Snoddy, Casey; Nudelman, Kelly N. H.; Faber, Kelley M.; Foroud, Tatiana; Aisen, Paul; Griffin, Percy; Grinberg, Lea T.; Iaccarino, Leonardo; Kirby, Kala; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Rumbaugh, Malia; Soleimani-Meigooni, David N.; Toga, Arthur W.; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Beckett, Laurel A.; Day, Gregory S.; Graff-Radford, Neill R.; Duara, Ranjan; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon J.; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle B.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). Methods: Cerebrospinal fluid (CSF) concentrations of Aβ1-40, Aβ1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. Results: Biomarkers were correlated with one another. Levels of CSF Aβ42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aβ42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. Discussion: This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.Item Noggin-Loaded PLA/PCL Patch Inhibits BMP-Initiated Reactive Astrogliosis(MDPI, 2024-10-29) Hawes, James; Gonzalez-Manteiga, Ana; Murphy, Kendall P.; Sanchez-Petidier, Marina; Moreno-Manzano, Victoria; Pathak, Bedika; Lampe, Kristin; Lin, Chia-Ying; Peiro, Jose L.; Oria, Marc; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringMyelomeningocele (MMC) is a congenital birth defect of the spine and spinal cord, commonly treated clinically through prenatal or postnatal surgery by repairing the unclosed spinal canal. Having previously developed a PLA/PCL polymer smart patch for this condition, we aim to further expand the potential therapeutic options by providing additional cellular and biochemical support in addition to its mechanical properties. Bone morphogenetic proteins (BMPs) are a large class of secreted factors that serve as modulators of development in multiple organ systems, including the CNS. We hypothesize that our smart patch mitigates the astrogenesis induced, at least partly, by increased BMP activity during MMC. To test this hypothesis, neural stem or precursor cells were isolated from rat fetuses and cultured in the presence of Noggin, an endogenous antagonist of BMP action, with recombinant BMPs. We found that the developed PLA/PCL patch not only serves as a biocompatible material for developing neural stem cells but was also able to act as a carrier for BMP-Notch pathway inhibitor Noggin, effectively minimizing the effect of BMP2 or BMP4 on NPCs cultured with the Noggin-loaded patch.